Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Prokaryotic Transposable Element Tn5

Abstract

The current interest in transposable elements stems from their ubiquity and their characteristic ability to insert into many sites in the genomes of their host organisms. They are responsible for a large fraction of spontaneous mutations and chromosome rearrangements. They alter the expression of genes near their sites of insertion. They facilitate the flow of genes encoding traits such as antibiotic resistance and pathogenicity between different bacterial species. This review focuses on the bacterial transposon Tn5 which encodes resistance to kanamycin and related aminoglycoside antibiotics: (i) How it is proving to be a powerful new tool for in vivo genetic engineering in many bacterial species; (ii) Our understanding of the mechanism and control of its transposition; and (iii) Current concepts of how it and other mobile elements may have evolved and contributed to the evolution of bacterial populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goodenough, U. 1983. Transposable elements. In: Genetics (3rd edition). Saunders, Philadelphia.

    Google Scholar 

  2. Iida, S., Meyer, J., and Arber, W. 1983. p. 159–221. Prokaryotic IS elements. In: Mobile Genetic Elements. J.A. Shapiro (ed), Academic Press, New York.

    Google Scholar 

  3. Kleckner, N. 1981. Transposable elements in prokaryotes. Ann. Rev. Genet. 15: 341–404.

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro, J.A. (ed). 1983. 688 pp. Mobile Genetic Elements. Academic Press, New York.

    Google Scholar 

  5. Campbell, A. 1981. Evolutionary significance of accessory DNA elements in bacteria. Ann. Rev. Microbiol. 35: 55–83.

    Article  CAS  Google Scholar 

  6. Berg, C.M. and Berg, D.E. 1981. p. 107–116. Bacterial transposons. In: Microbiology 1981. D. Schlessinger (ed), ASM Publications, Washington, DC.

    Google Scholar 

  7. Campbell, A., Berg, D., Botstein, D., Lederberg, E., Novick, R., Starlinger, P. and Szybalski, W. 1979. Nomenclature of transposable elements in bacteria. Gene 5: 197–206.

    Article  CAS  PubMed  Google Scholar 

  8. McClintock, B. 1951. Chromosome organization and gene expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.

    Article  CAS  PubMed  Google Scholar 

  9. McClintock, B. 1956. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21: 197–216.

    Article  CAS  PubMed  Google Scholar 

  10. Cairns, J. 1981. The origin of human cancers. Nature 289: 353–357.

    Article  CAS  PubMed  Google Scholar 

  11. Temin, H.M. 1980. Origin of retroviruses from cellular moveable genetic elements. Cell 21: 599–600.

    Article  CAS  PubMed  Google Scholar 

  12. Rechavi, G., Givol, D. and Canaani, E. 1982. Activation of a cellular oncogene by DNA rearrangement: possible involvement of ah IS-like element. Nature 300: 607–611.

    Article  CAS  PubMed  Google Scholar 

  13. Berg, D.E., Davies, J., Allet, B. and Rochaix, J.-D. 1975. Transposition of R factor genes to bacteriophage λ. Proc. Natl. Acad. Sci. U.S.A. 72: 3628–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jorgensen, R.A., Rothstein, S.J. and Reznikoff, W.S. 1979. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet. 177: 65–72.

    Article  CAS  PubMed  Google Scholar 

  15. Auerswald, E., Ludwig, O. and Schaller, H. 1980. Structural analysis of Tn5. Cold Spring Harbor Symp. Quant. Biol. 45: 107–113.

    Article  Google Scholar 

  16. Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B. and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Article  CAS  PubMed  Google Scholar 

  17. Federoff, N.V. 1983. p. 163. Controlling elements in Maize. In: Mobile Genetic Elements. J. A. Shapiro (ed), Academic Press, N. Y.

    Google Scholar 

  18. Taylor, A.L. 1963. Bacteriophage-induced mutations in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 50: 1043–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Starlinger, P. and Saedler, H. 1972. Insertion mutations in microorganisms. Biochimie 54: 177–185.

    Article  CAS  PubMed  Google Scholar 

  20. Berg, D. 1977. p. 205–212. Insertion and excision of the transposable kanamycin resistance determinant Tn5. In: DNA Insertion Elements, Plasmids and Episomes. A. I. Bukhari, J. A. Shapiro, and S. L. Adhya (eds), Cold Spring Harbor Press, New York.

    Google Scholar 

  21. Berg, D. 1977. p. 555–558. Detection of transposable antibiotic resistance determinants using phage lambda. In: DNA Insertion Elements, Plasmids and Episomes. A. I. Bukhari, J. A. Shapiro, and S. L. Adhya (eds), Cold Spring Harbor Press, New York.

    Google Scholar 

  22. Schaller, H. 1978. The intergenic regions and origins for filamentous phage DNA replication. Cold Spring Harbor Symp. Quant. Biol. 43: 401–408.

    Article  Google Scholar 

  23. Hedges, R.W. and Jacob, A.E. 1974. Transposition of ampicillin resistance from RP4 to other replicons. Mol. Gen. Genet. 132: 31–40.

    Article  CAS  PubMed  Google Scholar 

  24. Heffron, F., Rubens, C. and Falkow, S. 1975. Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Proc. Natl. Acad. Sci. U.S.A. 72: 3623–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gottesman, M.M. and Rosner, J.L. 1975. Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proc. Natl. Acad. Sci. U.S.A. 72: 5041–5045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jorgensen, R.A., Berg, D.E., Allet, B. and Reznikoff, W.S. 1979. Restriction endonuclease cleavage map of Tn10, a transposon which encodes tetracycline resistance. J. Bacteriol. 137: 681–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleckner, R., Chan, R.K., Tye, B.-K., and Botstein, D. 1975. Mutagenesis by insertion of a drug resistance element carrying an inverted repetition. J. Mol. Biol. 97: 561–575.

    Article  CAS  PubMed  Google Scholar 

  28. Berg, D.E. and Drummond, M.H. 1978. Absence of DNA sequences homologous to transposable element Tn5 (Kan) in the chromosome of Eschenchia coli K-12. J. Bacteriol. 136: 419–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berg, D., Weiss, A. and Crossland, L. 1980. The polarity of Tn5 insertion mutations in Escherichia coli. J. Bacteriol. 142: 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deonier, R.C., Mirels, L. 1977. Excision of F plasmid sequences by recombination at directly repeated insertion sequence 2 elements: Involvement of recA. Proc. Natl. Acad. Sci. U.S.A. 74: 3965–3969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stahl, F.W. 1979. 333 pp. Genetic Recombination. Thinking about it in phage and fungi. Freeman, San Francisco.

  32. Yagil, E., Dower, N.A., Chattoraj, D., Stahl, M., Pierson, C. and Stahl, F. 1980. Chi mutation in a transposon and the orientation dependence of Chi phenotype. Genetics 96: 43–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothstein, S.J. and Reznikoff, W.S. 1981. The functional differences in the inverted repeats of Tn5 are caused by single base pair nonhomology. Cell 23: 191–199.

    Article  CAS  PubMed  Google Scholar 

  34. Berg, D.E., Egner, C., Hirschel, B.J., Howard, J., Johnsrud, L., Jorgensen, R. and Tlsty, T. 1980. Insertion, excision and inversion of transposon Tn5. Cold Spring Harbor Symp. Quant. Biol. 45: 115–123.

    Article  Google Scholar 

  35. Rothstein, S.J., Jorgensen, R.A., Postle, K. and Reznikoff, W.S. 1980. The inverted repeats of Tn5 are functionally different. Cell 19: 795–805.

    Article  CAS  PubMed  Google Scholar 

  36. Berg, D.E., Johnsrud, L., McDivitt, L., Ramabhadran, R. and Hirschel, B.J. 1982. The inverted repeats of Tn5 are transposable elements. Proc. Natl. Acad. Sci. U.S.A. 79: 2632–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hirschel, B.J. and Berg, D.E. 1982. A derivative of Tn5 with direct terminal repeats can transpose. J. Mol. Biol. 155: 105–120.

    Article  CAS  PubMed  Google Scholar 

  38. Isberg, R.R. and Syvanen, M. 1981. Replicon fusions promoted by the inverted repeats of Tn5: The right repeat is an insertion sequence. J. Mol. Biol. 150: 15–32.

    Article  CAS  PubMed  Google Scholar 

  39. Berg, D.E. 1983. Structural requirement for IS50-mediated gene transposition. Proc. Natl. Acad. Sci. U.S.A. 79: 792–796.

    Article  Google Scholar 

  40. Shapiro, J.A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. U.S.A. 76: 1933–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arthur, A. and Sherratt, D.J. 1979. Dissection of the transposition process: A transposon-encoded site-specific recombination system. Molec. Gen. Genet. 175: 267–274.

    Article  CAS  PubMed  Google Scholar 

  42. Harshey, R.M. and Bukhari, A.I. 1981. A mechanism of DNA transposition. Proc. Natl. Acad. Sci. U.S.A. 78: 1090–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galas, D.J. and Chandler, M. 1981. On the molecular mechanism of transposition. Proc. Natl. Acad. Sci. U.S.A. 78: 4858–4862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nash, H.A. 1981. Integration and excision of bacteriophage lambda: The mechanism of conservative site specific recombination. Ann. Rev. Genet. 15: 143–167.

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, A. 1983. p. 65–103. Bacteriophage λ. In: Mobile Genetic Elements. J. A. Shapiro (ed), Academic Press, New York.

    Google Scholar 

  46. Heffron, F. 1983. p. 223–260. Tn3 and its relatives. In: Mobile Genetic Elements. J. A. Shapiro (ed), Acadmic Press, New York.

    Google Scholar 

  47. Gill, R., Heffron, F., Dougan, G. and Falkow, S. 1978. Analysis of sequences transposed by two classes of transposition deficient mutants of transposition element Tn3. J. Bacteriol. 136: 742–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaconas, G., Harshey, R.M., Sarvetnick, J., and Bukhari, A.I. 1981. Predominant endproducts of prophage Mu DNA transposition during the lytic cycle are replicon fusions. J. Mol. Biol. 150: 341–359.

    Article  CAS  PubMed  Google Scholar 

  49. Toussaint, A. and Resibois, A. 1983. p. 105–158. Phage Mu: Transposition as a life style. In: Mobile Genetic Elements. J. A. Shapiro (ed), Academic Press, New York.

    Google Scholar 

  50. Ohtsubo, E., Zenilman, M., and Ohtsubo, H. 1980. Plasmids containing insertion elements are potential transposons. Proc. Natl. Acad. Sci. U.S.A. 77: 750–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleckner, N. 1983. p. 261–298. Transposon Tn10. In: Mobile Genetic Elements. J. Shapiro (ed), Academic Press, New York.

    Google Scholar 

  52. Meyer, R., Boch, G. and Shapiro, J. 1979. Transposition of DNA inserted into deletions of the Tn5 kanamycin resistance element. Mol. Gen. Genet. 171: 7–13.

    Article  CAS  PubMed  Google Scholar 

  53. Hirschel, B.J., Galas, D.J., Berg, D.E. and Chandler, M. 1982. Structure and stability of transposon 5-mediated cointegrates. J. Mol. Biol. 159: 557–580.

    Article  CAS  PubMed  Google Scholar 

  54. Galas, D.J. and Chandler, M. 1982. Structure and stability of Tn9-mediated cointegrates. Evidence for two pathways of transposition. J. Mol. Biol. 154: 245–272.

    Article  CAS  PubMed  Google Scholar 

  55. Gilbert, W. and Dressler, D. 1968. DNA replication: the rolling circle model. Cold Spring Harbor Symp. Quant. Biol. 33: 473–484.

    Article  CAS  PubMed  Google Scholar 

  56. Sasakawa, C. and Berg, D.E. 1982. IS50 mediated inverse transposition: Discrimination between the two ends of an IS element. J. Mol. Biol. 159: 257–271.

    Article  CAS  PubMed  Google Scholar 

  57. Sasakawa, C., Lowe, J.B., McDivitt, L. and Berg, D.E. 1982. Control of transposon Tn5 transposition in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 79: 7450–7454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berg, D.E., Lowe, J.B., Sasakawa, C. and McDivitt, L. 1982. The mechanism and control of Tn5 transposition. In: Fourteenth Stadler Genetics Symposium. G. Redei (ed), University of Missouri Press, in press.

    Google Scholar 

  59. Hirschel, B.J., Galas, D.J. and Chandler, M. 1982. Cointegrate formation by Tn5, but not transposition, is dependent on recA. Proc. Natl. Acad. Sci. U.S.A. 79: 4530–4534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liebhart, J., Ghelardini, P. and Paolozzi, L. 1982. Conservative integration of bacteriophage Mu DNA into pBR322 plasmid. Proc. Natl. Acad. Sci. U.S.A. 79: 4361–4366.

    Google Scholar 

  61. Akroyd, J.E. and Symonds, N. 1983. Evidence for a conservative pattern of transposition of bacteriophage Mu. Nature 303: 84–86.

    Article  CAS  PubMed  Google Scholar 

  62. Biel, S.W. and Berg, D.E. unpublished data.

  63. Chandler, M., Roulet, E., Silver, L., Boy de la Tour, E., and Caro, L. 1979. Tn10 mediated integration of plasmid R100. 1 into the bacterial chromosome: inverse transposition. Mol. Gen. Genet. 173: 23–30.

    Article  CAS  PubMed  Google Scholar 

  64. Sasakawa, C., Carle, G.F. and Berg, D.E. Nonidentity of domains at the termini of IS50 essential for transposition, in preparation.

  65. Doolittle, W.F. and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  CAS  PubMed  Google Scholar 

  66. Hard, D., Dykhuizen, D. and Berg, D.E. 1983. Accessory DNAs in bacteria: Playground for coevolution. In: The Origins and Development of Adaptation. CIBA Foundation Symposium 102, in press.

    Google Scholar 

  67. Herskowitz, I. and Hagen, D. 1980. The lysis-lysogeny decision of phage λ: Explicit programming and responsiveness. Ann. Rev. Genet. 14: 399–445.

    Article  CAS  PubMed  Google Scholar 

  68. Bukhari, A.I. 1976. Bacteriophage Mu as a transposition element. Ann. Rev. Genet. 10: 389–412.

    Article  CAS  PubMed  Google Scholar 

  69. Lowe, J. and Berg, D.E. unpublished data.

  70. Biek, D. and Roth, J.R. 1980. Regulation of Tn5 transposition in Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 77: 6047–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson, R.C., Yin, J.C.P. and ReznikofF, W.S. 1982. Control of Tn5 transposition in Escherichia coli by a protein from the right repeat. Cell 30: 873–882.

    Article  CAS  PubMed  Google Scholar 

  72. Isberg, R.R., Lazaar, A.L., and Syvanen, M. 1982. Regulation of Tn5 by the right repeat proteins: Control at the level of the transposition reaction? Cell 30: 883–892.

    Article  CAS  PubMed  Google Scholar 

  73. Lowe, J.B. and Berg, D.E. 1983. A product of the transposase gene of Tn5 inhibits Tn5 transposition. Genetics 103: 605–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shaw, K.J. and Berg, C.M. 1979. Escherichia coli K-12 auxotrophs induced by insertion of the transposable element Tn5. Genetics 92: 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller, J.H., Calos, M.P., Galas, D., Hofer, M., Buchel, D.C. and Muller-Hill, B. 1980. Genetic analysis of transpositions in the lac region of Escherichia coli. J. Mol. Biol. 144: 1–18.

    Article  CAS  PubMed  Google Scholar 

  76. Bossi, L. and Ciampi, M.S. 1981. DNA sequences at the sites of three insertions of the transposable element Tn5 in the histidine operon of Salmonella. Mol. Gen. Genet. 183: 406–408.

    Article  CAS  PubMed  Google Scholar 

  77. Howe, M. personal communication.

  78. Berg, D.E., Schmandt, M. and Lowe, J.B. Specificity of transposon Tn5 insertion, submitted for publication.

  79. Tu, C.P. and Cohen, S.N. 1980. Translocation specificity of the Tn3 element: Characterization of sites of multiple insertions. Cell 19: 151–160.

    Article  CAS  PubMed  Google Scholar 

  80. Galas, D.J., Calos, M.P. and Miller, J.H. 1980. Sequence analysis of Tn9 insertions in the lacZ gene. J. Mol. Biol. 144: 19–41.

    Article  CAS  PubMed  Google Scholar 

  81. Isberg, R.R. and Syvanen, M. 1982. DNA gyrase is a host factor required for transposition of Tn5. Cell 30: 9–18.

    Article  CAS  PubMed  Google Scholar 

  82. Fitts, R. and Taylor, A.L. 1980. Integration of bacteriophage Mu at host chromosomal replication forks during lytic development. Proc. Natl. Acad. Sci. U.S.A. 77: 2801–2805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reed, R.R. 1981. Transposon-mediated site-specific recombination: A defined in vitro system. Cell 25: 713–719.

    Article  CAS  PubMed  Google Scholar 

  84. Sternglanz, R., DiNardop, S., Voelkel, K.A., Nishimura, Y., Hirota, Y., Becherer, K., Zumstein, L. and Wang, J.C. 1981. Mutations in the gene coding for Escherichia coli DNA topoisdmerase I affect transcription and transposition. Proc. Natl. Acad. Sci. U.S.A. 78: 2747–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sasakawa, C., Uno, U. and Yoshikawa, M. 1981. The requirement for both DNA polymerase and 5′ to 3′ exonuclease activities of DNA polymerase I during Tn5 transposition. Mol. Gen. Genet. 182: 19–24.

    Article  CAS  PubMed  Google Scholar 

  86. Syvanen, M., Hopkins, J.D. and Clements, M. 1982. A new class of mutants in DNA polymerase I that affect gene transposition. J. Mol. Biol. 158: 203–212.

    Article  CAS  PubMed  Google Scholar 

  87. Kornberg, A. 1980. 724 pp. DNA Replication. W. H. Freeman Co., San Francisco.

  88. Bukhari, A.I. 1975. Reversal of mutator phage Mu integration. J. Mol. Biol. 96: 87–99.

    Article  CAS  PubMed  Google Scholar 

  89. Egner, C. and Berg, D.E. 1981. Excision of transposon Tn5 dependent on the inverted repeats but not the transposase function of Tn5. Proc. Natl. Acad. Sci. U.S.A. 78: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foster, T.J., Lundblad, V., Hanley-Way, S., Halling, S.M. and Kleckner, N. 1981. Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23: 215–227.

    Article  CAS  PubMed  Google Scholar 

  91. Farabaugh, P.J., Schmeissner, U., Hofer, M. and Miller, J.H. 1978. Genetic studies of the lac repressor. On the molecular nature of spontaneous hotspots in the lac I gene of E. coli. J. Mol. Biol. 126: 847–863.

    Article  CAS  PubMed  Google Scholar 

  92. Collins, J. 1981. Instability of palindromic DNA in Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 45: 409–416.

    Article  CAS  PubMed  Google Scholar 

  93. Hopkins, J.D., Clements, M.B. and Syvanen, M. 1983. New class of mutations in Escherichia coli (uup) that affect precise excision of insertion elements and bacteriophage Mu growth. J. Bacteriol. 153: 384–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hermann, R., Neugebauer, K., Zentgraf, H. and Schaller, H. 1978. Transposition of a DNA sequence determining kanamycin resistance into the single-stranded genome of bacteriophage fd. Mol. Gen. Genet. 159: 171–178.

    Article  Google Scholar 

  95. Hopkins, J.D., Clements, M.B., Liang, T.-Y., Isberg, R.R. and Syvanen, M. 1980. Recombination genes on the Escherichia coli sex factor specific for transposable elements. Proc. Natl. Acad. Sci. U.S.A. 77: 2814–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berg, D.E., Egner, C. and Lowe, J.B. 1983. Mechanism of F factor enhanced excision of transposon Tn5. Gene 22 1–7.

    Article  CAS  PubMed  Google Scholar 

  97. Gross, J.D. and Caro, L. 1965. Genetic transfer in bacterial mating. Science 150: 1679–1684.

    Article  CAS  PubMed  Google Scholar 

  98. Albertini, A.M., Hofer, M., Calos, M.P. and Miller, J.H. 1982. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29: 319–328.

    Article  CAS  PubMed  Google Scholar 

  99. Colbere-Garapin, F., Horodniceanu, F., Kourilsky, P. and Garapin, A.C. 1982. A new dominant hybrid selective marker for higher eukaryotic cells. J. Mol. Biol. 150: 1–14.

    Article  Google Scholar 

  100. Southern, P.J. and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV40 early region promoter. J. Mol. Appl. Genetics 1: 327–341.

    CAS  Google Scholar 

  101. Berg, C.M., Shaw, K.J., Vender, J., and Borucka-Mankiewicz, M. 1979. Physiological characterization of polar Tn5-induced isoleucine-valine auxotrophs in Escherichia coli K-12: Evidence for an internal promoter in the ilvOGEDA operon. Genetics 93: 309–319.

    Article  CAS  PubMed Central  Google Scholar 

  102. Merrick, M., Filser, M., Kennedy, C. and Dixon, R. 1978. Polarity of mutations induced by insertion of transposons Tn5, Tn7, and Tn10 into the nif gene cluster of Klebsiella pneumoniae. Mol. Gen. Genet. 165: 103–111.

    Article  CAS  PubMed  Google Scholar 

  103. Berg, C.M. and Curtiss, R. 1967. Transposition derivatives of an Hfr strain of Escherichia coli K-12. Genetics 56: 503–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kleckner, N., Roth, J. and Botstein, D. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116: 125–159.

    Article  CAS  PubMed  Google Scholar 

  105. Hooykaas, P.J.J., Peerbolte, R., Regensburg-Tuïnk, A.J.G., de Vries, P., and Schilperoort, R.A. 1982. A chromosomal linkage map of Agrobacterium lumefaciens and a comparison with the maps of Rhizobium spp. Mol. Gen. Genet. 188: 12–17.

    Article  CAS  Google Scholar 

  106. Pischl, D.L. and Farrand, S.K. 1983. Transposon-facilitated chromosome mobilization in Agrobacterium tumefaciens. J. Bacteriol. 153: 1451–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Newland, J.W., Green, B.A. and Holmes, R.K. 1983. Use of transposon Tn5 for transposon-facilitated recombination in Vibrio cholerae. Abstr. Amer. Soc. Microbiol. p. 72.

  108. Low, K.B. 1972. Escherichia coli K-12 F-prime factors, old and new. Bacteriol. Revs. 36: 587–607.

    Article  CAS  Google Scholar 

  109. Anderson, R.P. and Roth, J.R. 1978. Gene duplication in bacteria: alteration of gene dosage by sister-chromosome exchanges. Cold Spring Harbor Symp. Quant. Biol. 38: 1083–1087.

    Google Scholar 

  110. Kuner, J.M., Avery, L., Berg, D.E. and Kaiser, D. 1981. p. 128–132. Uses of transposon Tn5 in the genetic analysis of Myxococcus xanthus. In: Microbiology 1981. D. Schlessinger (ed), ASM Publications, Washington, D. C.

    Google Scholar 

  111. Avery, L. and Kaiser, A.D. 1983. Construction of tandem genetic duplications with defined end points in Myxococcus xanthus. Mol. Gen. Genet. in press.

  112. Avery, L. and Kaiser, A.D. 1983. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol. Gen. Genet. in press.

  113. Gill, R.E. and Kaiser, D. 1983. personal communication.

  114. Langer, P.J., Shanabruch, W.G. and Walker, G.C. 1981. Functional organization of plasmid pKMl0l. J. Bacteriol. 145: 1310–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, C.A. and Saier, M.H. 1983. Use of cloned mtl genes of Escherichia coli to introduce mtl deletion mutations into the chromosome. J. Bacteriol. 153: 685–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coleman, D.C., Chopra, I., Shales, S.W., Howe, T.G.B., and Foster, T.J. 1983. Analysis of tetracycline resistance encoded by transposon Tn10: Deletion mapping of tetracycline-sensitive point mutations and identification of two structural genes. J. Bacteriol. 153: 921–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Berg, C.M., Shaw, K.J., and Berg, D.E. 1980. The ilvG gene is expressed in Escherichia coli K-12. Gene 12: 165–170.

    Article  CAS  PubMed  Google Scholar 

  118. Fouts, K.E. and Barbour, S.D. 1982. Insertion of transposons through the major cotransduction gap of Escherichia coli K-12. J. Bacteriol. 149: 106–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuner, J. and Kaiser, D. 1981. Introduction of transposon Tn5 into Myxococcus for the analysis of developmental and other non-selectable mutants. Proc. Natl. Acad. Sci. U.S.A. 78: 425–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruvkun, G.B. and Ausubel, F.M. 1981. A general method lor site-directed mutagenesis in prokaryotes. Nature 289: 85–88.

    Article  CAS  PubMed  Google Scholar 

  121. de Bruijn, F.J. and Ausubel, F.M. 1981. The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: identification of glnR, a gene involved in the regulation of the nif and hut operons. Mol. Gen. Genet. 183: 289–297.

    Article  CAS  PubMed  Google Scholar 

  122. Leong, S.A., Ditta, G.S. and Helinski, D.R. 1982. Heme biosynthesis in Rhizobium. J. Biol. Chem. 257: 8724–8730.

    Article  CAS  PubMed  Google Scholar 

  123. Klee, H.J., White, F.F., Iyer, V.N., Gordon, M.P. and Nester, E.W. 1983. Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 153: 878–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Purcell, B.K. and Clegg, S. 1983. Construction and expression of recombinant plasmids encoding type 1 fimbriae of a urinary Klebsiella pneumoniae isolate. Infect. and Immun. 39: 1122–1127.

    Article  CAS  Google Scholar 

  125. Engebrecht, J., Nealson, K. and Silverman, M. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773–781.

    Article  CAS  PubMed  Google Scholar 

  126. McKinnon, R.D., Bachetti, S. and Graham, F.L. 1982. Tn5 mutagenesis of the transforming genes of human adenovirus type 5. Gene 19: 33–42.

    Article  CAS  PubMed  Google Scholar 

  127. Silverman, M. and Simon, M. 1980. Phase variation: genetic analysis of switching mutants. Cell 19: 845–854.

    Article  CAS  PubMed  Google Scholar 

  128. Bricker, J., Mulks, M.H., Plaut, A.G., Moxon, E.R. and Wright, A. 1983. IgAI proteases of Haemophilus infiuenzae: cloning and characterization in Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A. 80: 2681–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shaw, K.J., Berg, C.M. and Sobol, T. 1980. Salmonella typhimurium mutants defective in acetohydroxy acid synthase I and II. J. Bacterol. 141: 1258–1263.

    Article  CAS  Google Scholar 

  130. Scott, K.F., Hughes, J.E., Gresshoff, P.M., Beringer, J.E., Rolfe, B.G. and Shine, J. 1982. Molecular cloning of Rhizobium trifolii genes involved in symbiotic nitrogen fixation. J. Mol. Appl. Genetics. 1: 315–326.

    CAS  Google Scholar 

  131. Purucker, M., Bryan, R., Amemiya, K., Ely, B. and Shapiro, L. 1982. Isolation of a Caulobacter gene cluster specifying flagellum production by using nonmotile Tn5 insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 79: 6797–6801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Belas, R., Mileham, A., Cohn, D., Hilmen, M., Simon, M. and Silverman, M. 1982. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harueyi. Science 218: 791–793.

    Article  CAS  PubMed  Google Scholar 

  133. Schell, M.A. 1983. Cloning and expression in Escherichia coli of the napthalene degradation genes from plasmid NAH7. J. Bacteriol. 153: 822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shimkets, L.J., Gill, R.E. and Kaiser, D. 1983. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc. Natl. Acad. Sci. U.S.A. 80: 1406–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hudziak, R.M., Laski, F.A., RajBhandary, U.L., Sharp, P.A. and Capecchi, M.R. 1982. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes. Cell 31: 137–146.

    Article  CAS  PubMed  Google Scholar 

  136. Berg, C.M., Grullon, C., Wang, A., Whalen, W.A. and Berg, D.E. 1983. Generalized and specialized transduction of Tn5 by bacteriophage PI Genetics, submitted for publication.

  137. Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E. and Ausubel, F.M. 1982. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol. 149: 114–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Forrai, T., Vincze, E., Bánfalvi, Z., Kiss, G.B., Randhawa, G.S. and Kondorosi, A. 1983. Localization of symbiotic mutations in Rhizobium meliloti. J. Bacteriol. 153: 635–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bánfalvi, A., Randhawa, S., Kondorosi, E., Kiss, G.B. and Kondorosi, A. 1983. Construction and characterization of R-prime plasmids carrying symbiotic genes of R. meliloti. Mol. Gen. Genet. 189: 129–135.

    Article  Google Scholar 

  140. Casadaban, M. and Cohen, S.N. 1979. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. U.S.A. 76: 4530–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Proctor, G.N. and Rownd, R.H. 1982. Rosanilins: indicator dyes for chloramphenicol acetyltransferase. J. Bacteriol. 150: 1375–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bochner, B.R., Huang, H.C., Schieven, G.L. and Ames, B.N. 1980. Positive selection for loss of tetracycline resistance. J. Bacteriol. 143: 926–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maloy, S.R. and Nunn, W.D. 1981. Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol. 145: 1110–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Foster, T.J. 1975. Tetracycline-sensitive mutants of the F-like R factors R100 and R100-1. Mol. Gen. Genet. 137: 85–88.

    Article  CAS  PubMed  Google Scholar 

  145. Curtiss, R., Charamella, L.J., Berg, C.M. and Harris, P.E. 1965. Kinetic and genetic analyses of D-cycloserine inhibition and resistance in Escherichia coli. J. Bacteriol. 90: 1238–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Beringer, J.E., Beynon, J.L., Buchanan-Wollaston, A.V. and Johnston, A.W.B. 1978. Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature 276: 633–634.

    Article  Google Scholar 

  147. Panopoulos, N. personal communication.

  148. Berg, C.M. and Simpson, D.A. 1983. Bacteriophage P1 as a vector for Tn5 mutagenesis in the Enterobacteriaceae. in preparation.

  149. Belas, M.R., Mileham, A.J., Simon, M.I. and Silverman, M.R. 1983. Transposon mutagenesis in marine Vibrio spp. Abst. Amer. Soc. Microbiol. p. 126.

  150. Davies, J. and Smith, D.I. 1978. Plasmid-determined resistance to antimicrobial agents. Ann. Rev. Microbiol. 32: 469–518.

    Article  CAS  Google Scholar 

  151. Oka, A., Sugisaki, H. and Takanami, M. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217–226.

    Article  CAS  PubMed  Google Scholar 

  152. Berg, C.M. 1973. Intrastrand error correction in DNA: A possible evolutionary mechanism. Genetics 74: s21.

    Google Scholar 

  153. Biel, S.W. and Hartl, D.L. 1983. Evolution of transposons: Natural selection for Tn5 in Escherichia coli K12. Genetics 103: 581–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Singer, J.T. and Finnerty, W.R. 1983. Behavior of Tn5 in Acineto-bacter. Abstr. Amer. Soc. Microbiol. p. 126.

  155. White, F.F. and Nester, E.W. 1980. Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J. Bacteriol. 141: 1134–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Garfinkel, D.J. and Nester, E.W. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144: 732–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kao, J.C., Perry, K.L. and Kado, C.I. 1982. Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 188: 425–432.

    Article  CAS  PubMed  Google Scholar 

  158. Srivastava, S., Urban, M. and Friedrich, B. 1982. Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn5. Arch. Microbiol. 131: 203–207.

    Article  CAS  PubMed  Google Scholar 

  159. Elmerich, C. and Franche, C. 1982. Azospirillum genetics: plasmids, bacteriophages and chromosome mobilization. In: Azospirillum Genetics, Physiology, Ecology. W. Klingmuller (ed), Experentia suppl. 42: 9–17.

    Google Scholar 

  160. Phadnis, S.H. personal communication.

  161. Weiss, A.A. and Falkow, S. 1983. Isolation and characterization of Tn5 insertion mutations in virulence genes of Bordetella pertussis. Abstr. Amer. Soc. Microbiol. p. 36.

  162. Ely, B. and Croft, R.H. H. 1982. Transposon mutagenesis in Caulobacter crescentus. J. Bacteriol. 149: 620–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zink, R.T., Feese, D.A. and Chatterjee, A.K. 1982. Instability of the R plasmid pJB4JI and transposition of Tn5 on Erwinia carotovora pv. carotovora. Phytopathol. 72: 933.

    Google Scholar 

  164. Chatterjee, A.K., Thurn, K.K. and Feese, D.A. 1983. Tn5-induced mutations in the enterobacterial phytopathogen Erwinia chrysanthemi. App. Environ. Microbiol. 45: 644–650.

    Article  CAS  Google Scholar 

  165. Heilmann, H., Burkardt, H.-J., Pühler, A. and Reeve, J.N. 1980. Transposon mutagenesis of the gene encoding the bacteriophage PI restriction endonuclease. Colincarity of the gene and gene product. J. Mol. Biol. 144: 387–396.

    Article  CAS  PubMed  Google Scholar 

  166. Howe, M. personal communication.

  167. Reis, M.H.L., Affonso, M.H.T., Trabulsi, L.R., Mazaitis, A.J., Maas, R. and Maas, W.K. 1980. Transfer of a CFA/I-ST plasmid promoted by a conjugative plasmid in a strain of Escherichia coli of serotype 0128ac:H12. Infection and Immunity 29: 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maas, W.K., Maas, R. and Mazaitis, A.J. 1981. p. 133–136. Enterotoxin genes: mapping and regulation studies. In: Microbiology 1981. D. Schlessinger (ed), ASM Publications, Washington, D. C.

    Google Scholar 

  169. Bender, R. personal communication.

  170. Finette, B.A. and Gibson, D.T. 1983. Transpositional mutations and genetic organization of the toluene (tod) operon of Pseudomonas putida. Abstr. Amer. Soc. Microbiol. p. 127.

  171. Yen, K.-M. and Gunsalus, I.C. 1982. Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Boucher, C., Message, B., Debieu, D. and Zischek, C. 1981. Use of P-1 incompatibility group plasmids to introduce transposons into Pseudomonas solanacearum. Phytopathol. 71: 639–642.

    Article  CAS  Google Scholar 

  173. Staskawicz, B., Dahlbeck, D., Miller, J. and Damm, D. 1982. Genetic and physical characterization of transposon Tn5 induced mutants in Pseudomonas solanacearum. Phytopathol. 72 1000.

    Google Scholar 

  174. DuTeau, N.M. and Atherly, A.G. 1983. Characterization of plasmid DNA from symbiotic mutants of Rhizobium japonicum last growing PRC strain after Tn5 mutagenesis. Abstr. Amer. Soc. Microbiol. p. 127.

  175. Hom, S.M. and Uratsu, S.L. 1983. Transposon mutagenesis in Rhizobium japonicum USDA strain 110. Abstr. Amer. Soc. Microbiol. p. 184.

  176. Buchanan-Wollaston, A.V., Beringer, J.E., Brewin, N.J., Hirsch, P.R. and Johnston, A.W.B. 1980. Isolation of symbolically defective mutants in Rhizobium leguminosarum by insertion of the transposon Tn5 into a transmissible plasmid. Mol. Gen. Genet. 178: 185–190.

    Article  CAS  Google Scholar 

  177. Duncan, M.J. 1981. Properties of Tn5-induced carbohydrate mutants in Rhizobium meliloti. J. Gen. Microbiol. 122 61–67.

    CAS  Google Scholar 

  178. Lamb, J.W., Hombrecher, G. and Johnston, A. W.B. 1982. Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol. Gen. Genet. 186: 449–452.

    Article  CAS  Google Scholar 

  179. Walton, D.A. and Moseley, B.E.B. 1981. Induced mutagenesis in Rhizobium trifolii. J. Gen. Microbiol. 124: 191–195.

    CAS  Google Scholar 

  180. Jarvis, B.D.W., Scott, K.F., Hughes, J.E., Djordjevic, M., Rolfe, B.D., and Shine, J. 1983. Conservation of genetic information between different Rhizobium species. Can. J. Microbiol. 29: 200–209.

    Article  CAS  Google Scholar 

  181. Hooykaas, P.J.J., van Brussel, A.A.N., den Dulk-Ras, H., van Slogteren, G.M.S., and Schilperoort, R.A. 1981. Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291: 351–353.

    Article  CAS  Google Scholar 

  182. Cen, Y., Bender, G.L., Trinick, M.J., Morrison, N.A., Scott, K.F., Gresshoff, P.M., Shine, J. and Rolfe, B.G. 1982. Transposon mutagenesis in Rhizobia which can nodulate both legumes and the nonlegume Parasponia. Appl. Environ. Microbiol. 43: 233–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Palva, E.T., Liljestrom, P. and Harayama, S. 1981. Cosmid cloning and transposon mutagenesis in Salmonella typhimunum using phage λ vehicles. Mol. Gen. Genet. 181: 153–157.

    Article  CAS  PubMed  Google Scholar 

  184. Guarente, L.P., Isberg, R.R., Syvanen, M. and Silhavy, T.J. 1980. Conferral of transposable properties to a chromosomal gene in Escherichia coli. J. Mol. Biol. 141: 235–248.

    Article  CAS  PubMed  Google Scholar 

  185. Dénarié, J., Rosenberg, C., Bergeron, B., Boucher, C., Michel, M. and Barate de Bertalmio, M. 1977. p. 507–520. Potential for RP4Mu plasmid for in vivo genetic engineering of gram negative bacteria. In: DNA Insertion Elements, Plasmids and Episomes. A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, (eds), Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  186. Van Vliet, F., Silva, B., van Montagu, M., and Schell, J. 1978. Transfer of RP4Mu plasmids to Agrobacterium tumefaciens. Plasmid 1: 446–455.

    Article  CAS  PubMed  Google Scholar 

  187. Rosner, J.L. 1972. Formation, induction and curing ot bacteriophage P1 lysogens. Virology 49: 679–689.

    Article  Google Scholar 

  188. Pühler, A., Burkardt, H.J. and Klipp, W. 1979. Cloning of the entire region for nitrogen fixation from Klebsiella pneumoniae on a multicopy plasmid vehicle in Escherichia coli. Mol. Gen. Genet. 176 17–24.

    Article  PubMed  Google Scholar 

  189. Csonka, L.N., Howe, M.M., Ingraham, J.L., Pierson, L.S., Turnbough, C.L. 1981. Infection of Salmonella typhimurium with coliphagc Mu d1 (Apr lac): construction of pyrlac lusions. J. Bacteriol. 145: 299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Guyer, M.S., Reed, R.R., Steitz, J.A. and Low, K.B. 1981. Identification of a sex factor affinity site in E. coli as γδ. Cold Spring Harbor Symp. Quant. Biol. 45: 135–140.

    Article  CAS  Google Scholar 

  191. Berg, D. 1980. Control of gene expression by a mobile recombinational switch. Proc. Natl. Acad. Sci. U.S.A. 77: 4880–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, D., Berg, C. The Prokaryotic Transposable Element Tn5. Nat Biotechnol 1, 417–435 (1983). https://doi.org/10.1038/nbt0783-417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0783-417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing