Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro selection of nucleoprotein enzymes

Abstract

Natural nucleic acids frequently rely on proteins for stabilization or catalytic activity. In contrast, nucleic acids selected in vitro can catalyze a wide range of reactions even in the absence of proteins. To augment selected nucleic acids with protein functionalities, we have developed a technique for the selection of protein-dependent ribozyme ligases. After randomizing a previously selected ribozyme ligase, L1, we selected variants that required one of two protein cofactors, a tyrosyl transfer RNA (tRNA) synthetase (Cyt18) or hen egg white lysozyme. The resulting nucleoprotein enzymes were activated several thousand fold by their cognate protein effectors, and could specifically recognize the structures of the native proteins. Protein-dependent ribozymes can potentially be adapted to novel assays for detecting target proteins, and the selection method's generality may allow the high-throughput identification of ribozymes capable of recognizing a sizable fraction of a proteome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L1 ligase, L1-N50 pool, and selection scheme.
Figure 2: Progress of the L1-N50 selections.
Figure 3: Protein-dependent ribozyme sequences and structures.
Figure 4: Ribozyme activity with inactivated protein samples.
Figure 5: Aptamer competition assays.
Figure 6: Binding and ligation activity as a function of protein concentration.

Similar content being viewed by others

References

  1. Kumar, S., Ma, B., Tsai, C.J., Wolfson, H. & Nussinov, R. Folding funnels and conformational transitions via hinge-bending motions. Cell Biochem. Biophys. 31, 141–164 (1999).

    Article  CAS  Google Scholar 

  2. Ackers, G.K. Deciphering the molecular code of hemoglobin allostery. Adv. Protein Chem. 51, 185–253 (1998).

    Article  CAS  Google Scholar 

  3. Tang, J. & Breaker, R.R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    Article  CAS  Google Scholar 

  4. Robertson, M.P. & Ellington, A.D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28, 1751–1759 (2000).

    Article  CAS  Google Scholar 

  5. Koizumi, M., Soukup, G.A., Kerr, J.N. & Breaker, R.R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6, 1062–1071 (1999).

    Article  CAS  Google Scholar 

  6. Kurz, J.C. & Fierke, C.A. Ribonuclease P: a ribonucleoprotein enzyme. Curr. Opin. Chem. Biol. 4, 553–558 (2000).

    Article  CAS  Google Scholar 

  7. Schön, A. Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme. FEMS Microbiol. Rev. 23, 391–406 (1999).

    Article  Google Scholar 

  8. Lambowitz, A.M., Caprara, M.G., Zimmerly, S. & Perlman, P.S. Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In The RNA world. Edn. 2. (eds Gesteland, R.F., Cech, T. & Atkins, J.F.) 451–485 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1999).

    Google Scholar 

  9. Weeks, K.M. & Cech, T.R. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5′ splice site domain. Cell 82, 221–230 (1995).

    Article  CAS  Google Scholar 

  10. Weeks, K.M. & Cech, T.R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271, 345–348 (1996).

    Article  CAS  Google Scholar 

  11. Weeks, K.M. Protein-facilitated RNA folding. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  12. Coetzee, T., Herschlag, D. & Belfort, M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 8, 1575–1588 (1994).

    Article  CAS  Google Scholar 

  13. Herschlag, D., Khosla, M., Tsuchihashi, Z. & Karpel, R.L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 13, 2913–2924 (1994).

    Article  CAS  Google Scholar 

  14. Herschlag, D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995).

    Article  CAS  Google Scholar 

  15. Robertson, M.P. & Ellington, A.D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17, 62–66 (1999).

    Article  CAS  Google Scholar 

  16. Sargueil, B., Pecchia, D.B. & Burke, J.M. An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry 34, 7739–7748 (1995).

    Article  CAS  Google Scholar 

  17. Soukup, G.A. & Breaker, R.R. Nucleic acid molecular switches. Trends Biotechnol. 17, 469–476 (1999).

    Article  CAS  Google Scholar 

  18. Saldanha, R., Ellington, A. & Lambowitz, A.M. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. J. Mol. Biol. 261, 23–42 (1996).

    Article  CAS  Google Scholar 

  19. Garriga, G. & Lambowitz, A.M. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions. Cell 46, 669–680 (1986).

    Article  CAS  Google Scholar 

  20. Caprara, M.G., Mohr, G. & Lambowitz, A.M. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. J. Mol. Biol. 257, 512–531 (1996).

    Article  CAS  Google Scholar 

  21. Soukup, G.A. & Breaker, R.R. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589 (1999).

    Article  CAS  Google Scholar 

  22. Robertson, M.P., Hesselberth, J.R. & Ellington, A.D. Optimization and optimality of a short ribozyme ligase that joins non-Watson–Crick base pairings. RNA 7, 513–523 (2001).

    Article  CAS  Google Scholar 

  23. Ahern, T.J. & Klibanov, A.M. The mechanisms of irreversible enzyme inactivation at 100°C. Science 228, 1280–1284 (1985).

    Article  CAS  Google Scholar 

  24. Fischer, B., Sumner, I. & Goodenough, P. Analysis of catalytic properties of hen egg white lysozyme during renaturation from denatured and reduced material. Arch. Biochem. Biophys. 298, 361–364 (1992).

    Article  CAS  Google Scholar 

  25. Cox, J.C. & Ellington, A.D. Automated selection of anti-protein aptamers. Bioorg. Med. Chem. in press.

  26. Myers, C.A. et al. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. J. Mol. Biol. 262, 87–104 (1996).

    Article  CAS  Google Scholar 

  27. Loria, A., Niranjanakumari, S., Fierke, C.A. & Pan, T. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37, 15466–15473 (1998).

    Article  CAS  Google Scholar 

  28. Biswas, R., Ledman, D.W., Fox, R.O., Altman, S. & Gopalan, V. Mapping RNA–protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. J. Mol. Biol. 296, 19–31 (2000).

    Article  CAS  Google Scholar 

  29. Niranjanakumari, S., Stams, T., Crary, S.M., Christianson, D.W. & Fierke, C.A. Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc. Natl. Acad. Sci. USA 95, 15212–15217 (1998).

    Article  CAS  Google Scholar 

  30. Kurz, J.C., Niranjanakumari, S. & Fierke, C.A. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor–tRNAAsp. Biochemistry 37, 2393–2400 (1998).

    Article  CAS  Google Scholar 

  31. Reich, C., Olsen, G.J., Pace, B. & Pace, N.R. Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239, 178–181 (1988).

    Article  CAS  Google Scholar 

  32. Mendoza, L.G. et al. High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27, 778–780, 782–786, 788 (1999).

    Article  CAS  Google Scholar 

  33. Borrebaeck, C.A. Antibodies in diagnostics—from immunoassays to protein chips. Immunol. Today 21, 379–382 (2000).

    Article  CAS  Google Scholar 

  34. Holt, L.J., Büssow, K., Walter, G. & Tomlinson, I.M. By-passing selection: direct screening for antibody–antigen interactions using protein arrays. Nucleic Acids Res. 28, E72 (2000).

    Article  CAS  Google Scholar 

  35. Hesselberth, J., Robertson, M.P., Jhaveri, S. & Ellington, A.D. In vitro selection of nucleic acids for diagnostic applications. J. Biotechnol. 74, 15–25 (2000).

    CAS  PubMed  Google Scholar 

  36. Cox, J.C., Rudolph, P. & Ellington, A.D. Automated RNA selection. Biotechnol. Prog. 14, 845–850 (1998).

    Article  CAS  Google Scholar 

  37. Jhaveri, S.D. & Ellington, A.D. In vitro selection of RNA aptamers to a protein target by filter immobilization. In Current protocols in nucleic acid chemistry. (eds Beaucage, S.L., Bergstrom, D.E., Glick, G.D. & Jones, R.A.) 9.3.1–9.3.25 (Wiley, New York, NY; 2000).

    Google Scholar 

  38. Heus, H.A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jay Hesselberth and Christopher Myers for providing purified Cyt18 protein, Jamie Bacher for providing E. coli TrpRS, and Colin Cox for supplying unpublished aptamer sequences. This work was supported by DARPA contract no. N65236-98-1-5413.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, M., Ellington, A. In vitro selection of nucleoprotein enzymes. Nat Biotechnol 19, 650–655 (2001). https://doi.org/10.1038/90256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing