Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Peptidomimetic compounds that inhibit antigen presentation by autoimmune disease-associated class II major histocompatibility molecules

Abstract

We have identified a heptapeptide with high affinity to rheumatoid arthritis–associated class II major histocompatibility (MHC) molecules. Using a model of its interaction with the class II binding site, a variety of mimetic substitutions were introduced into the peptide. Several unnatural amino acids and dipeptide mimetics were found to be appropriate substituents and could be combined into compounds with binding affinities comparable to that of the original peptide. Compounds were designed that were several hundred-fold to more than a thousand-fold more potent than the original peptide in inhibiting T-cell responses to processed protein antigens presented by the target MHC molecules. Peptidomimetic compounds of this type could find therapeutic use as MHC-selective antagonists of antigen presentation in the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of cathepsin stability and peptidomimetic substitutions on inhibition of antigen presentation.
Figure 2: MHC selectivity of inhibition by different peptidomimetic compounds.

Similar content being viewed by others

References

  1. Nepom, B.S. The role of the major histocompatibility complex in autoimmunity. Clin. Immunol. Immunopathol. 67, S50– S55 (1993).

    Article  CAS  Google Scholar 

  2. Schiff, B., Mizrachi, Y., Orgad, S., Yaron, M. & Gazit, I. Association of HLA-Aw31 and HLA-DR1 with adult rheumatoid arthritis. Ann. Rheum. Dis. 41 , 403–404 (1982).

    Article  CAS  Google Scholar 

  3. McMichael, S.J., Sasazuki, T., McDevitt, H.O. & Payne, R.O. Increased frequency of HLA-Cw3 and HLA-Dw4 in rheumatoid arthritis. Arthritis Rheum. 20, 1037–1042 (1977).

    Article  CAS  Google Scholar 

  4. Ohta, N. et al. Association between HLA and Japanese patients with rheumatoid arthritis. Hum. Immunol. 5, 123–132 (1982).

    Article  CAS  Google Scholar 

  5. Nepom, G.T. et al. HLA genes associated with rheumatoid arthritis: identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum. 32, 15–21 ( 1989).

    Article  CAS  Google Scholar 

  6. Wordsworth, P. et al. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am. J. Hum. Genet. 51 585– 591 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lanchbury, J.S. et al. Strong primary selection for the Dw4 subtype of DR4 accounts for the HLA-DQw7 association with Felty's syndrome. Hum. Immunol. 32, 56–64 (1991).

    Article  CAS  Google Scholar 

  8. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  Google Scholar 

  9. Brown, J.H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33– 39 (1993).

    Article  CAS  Google Scholar 

  10. Stern, L.J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994).

    Article  CAS  Google Scholar 

  11. Dessen, A., Lawrence, C.M., Cupo, S., Zaller, D.M. & Wiley, D.C. X-ray crystal structure of HLA-DR4 (DRA1*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 7, 473–481 (1997).

    Article  CAS  Google Scholar 

  12. Hammer, J. et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 181, 1847–1855 (1995).

    Article  CAS  Google Scholar 

  13. Wucherpfennig, K.W. et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc. Natl. Acad. Sci. USA 92, 11935– 11939 (1995).

    Article  CAS  Google Scholar 

  14. Todd, J.A. et al. A molecular basis for MHC class II-associated autoimmunity. Science 240, 1003–1009 ( 1988).

    Article  CAS  Google Scholar 

  15. Hammer, J., Takacs, B. & Sinigaglia, F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J. Exp. Med. 176, 1007–1013 (1992).

    Article  CAS  Google Scholar 

  16. Hammer, J. et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74, 197–203 ( 1993).

    Article  CAS  Google Scholar 

  17. Adorini, L. et al. In vivo competition between self peptides and foreign antigens in T cell activation. Nature 334, 623– 625 (1988).

    Article  CAS  Google Scholar 

  18. Sakai, K. et al. Prevention of experimental encephalomyelitis with peptides that block the interaction of T cells with major histocompatibility complex proteins. Proc. Natl. Acad. Sci. USA 86, 9470– 9474 (1989).

    Article  CAS  Google Scholar 

  19. Hurtenbach, U., Lier, E., Adorini, L. & Nagy, Z.A. Prevention of autoimmune diabetes in non-obese diabetic mice by treatment with a class II major histocompatibility complex-blocking peptide. J. Exp. Med. 177, 1499–1504 (1993).

    Article  CAS  Google Scholar 

  20. Ishioka, G.Y. et al. Failure to demonstrate long-lived MHC saturation both in vitro and in vivo. Implications for therapeutic potential of MHC-blocking peptides. J. Immunol. 152, 4310– 4319 (1994).

    CAS  PubMed  Google Scholar 

  21. Bennett, K. et al. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 22, 1519–1524 (1992).

    Article  CAS  Google Scholar 

  22. Weiss, G.A., Collins, E.J., Garboczi, D.N., Wiley, D.C., & Schreiber, S.L. A tricyclic ring system replaces the variable regions of peptides presented by three alleles of human MHC class I molecules. Chem. Biol. 2, 401– 407 (1995).

    Article  CAS  Google Scholar 

  23. Hammer, J. et al. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl. Acad. Sci. USA 91, 4456–4460 ( 1994).

    Article  CAS  Google Scholar 

  24. Hammer, J. et al. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358 (1994).

    Article  CAS  Google Scholar 

  25. Ghosh, P., Amaya, M., Mellins, E. & Wiley, D.C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378, 457–462 ( 1995).

    Article  CAS  Google Scholar 

  26. Woulfe, S.L. et al. A peptidomimetic which specifically inhibits human leukocyte antigen DR4 Dw4-restricted T cell proliferation. J. Pharmacol. Exp. Ther. 281, 663–669 ( 1997).

    CAS  PubMed  Google Scholar 

  27. Ito, K. et al. HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J. Exp. Med. 183, 2635–2644 ( 1996).

    Article  CAS  Google Scholar 

  28. Siklodi, B. et al. Binding affinity independent contribution of peptide length to the stability of peptide-HLA-DR complexes in live antigen presenting cells. Hum. Immunol. 59, 463–471 (1998).

    Article  CAS  Google Scholar 

  29. Barany, G. & Merrifield, R.B. in The peptides. Vol. 2 (eds Gross, E. & Meienhofer, J.) 1–284 (Academic, New York; 1980).

    Google Scholar 

  30. Stork, G., Leong, A.Y.W., & Touzin, A.M. Alkylation and Michael additions of glycine ethyl ester. J. Organic Chem. 41, 3491– 3493 (1976).

    Article  CAS  Google Scholar 

  31. Cho, J.-H. & Djerassi, C. Minor and trace from marine invertebrates. 58. Stereostructure and synthesis of new sponge sterols jaspisterol and isojaspisterol. J. Organic Chem. 52, 4517– 4521 (1987).

    Article  CAS  Google Scholar 

  32. Lapatsanis, L., Milias, G., Froussios, K., & Kolovos, M. Synthesis of N-(2,2,2-trichloroethoxycarbonyl) L-amino acids and N-(9-fluorenylmethoxycarbonyl) L-amino acids involving succinimidoxy anion as a leaving group in amino acid protection. Synthesis 8, 671– 673 (1983).

    Article  Google Scholar 

  33. Evans, D.A. & Ellman, J.A. The total syntheses of the isodityrosine-derived cyclic tripeptides OF4949-III and K-13. Determination of the absolute configuration of K-13. J. Am. Chem. Soc. 111, 1063– 1072 (1989).

    Article  CAS  Google Scholar 

  34. Dorrow, R.L. & Gingrich, D.E. A novel preparation of scalemic N-methyl-a-aminoacids. J. Organic Chem. 60, 4986–4987 (1995).

    Article  Google Scholar 

  35. Chung, J.Y.L. et al. Conformationally constrained amino acids. Synthesis and optical resolution of 3-substituted proline derivatives. J. Org. Chem. 55, 270–275 (1990).

    Article  CAS  Google Scholar 

  36. Attwood, M.R., Hassall, C.H., Krohn, A., Lawton, G., & Redhaw, S. The design and synthesis of the angiotensin converting enzyme inhibitor cliazapril and related bicyclic compounds. J. Chem. Soc. Perkin Trans. I, 1011–1019 (1986).

    Article  Google Scholar 

  37. De Lombaert, S. et al. Practical syntheses of a novel tricyclic dipeptide mimetic based on a [6H]-azepinoindoline nucleus: application to angiotensin-converting enzyme inhibition. Tetrahedron Lett. 35, 7513– 7516 (1994).

    Article  CAS  Google Scholar 

  38. Gordon, T. et al. Peptide azoles: a new class of biologically-active dipeptide mimetics. Bioorg. Med. Chem. Lett. 3, 915–920. (1993).

    Article  CAS  Google Scholar 

  39. Falcioni, F. et al. Influence of CD26 and integrins on the antigen sensitivity of human memory T cells. Hum. Immunol. 50, 79– 90 (1996).

    Article  CAS  Google Scholar 

  40. Sinigaglia, F. et al. A malaria T-cell epitope recognized with most mouse and human MHC class II molecules. Nature 336, 778– 780 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Hongjin Bian, Joel P. Cooper, Donald C. Cox, Diana F. Gaizband, Nan Jiang, Raymond C. Makofske, Margarita Molina, Agostino V. Perrotta, Lucja Orzechowski, Mohan Ramanathan, Joyce I. Toral, Katherine Toth, and Xiaolei Zhang for their expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan A. Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcioni, F., Ito, K., Vidovic, D. et al. Peptidomimetic compounds that inhibit antigen presentation by autoimmune disease-associated class II major histocompatibility molecules. Nat Biotechnol 17, 562–567 (1999). https://doi.org/10.1038/9865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing