Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices


Most pockets in the human leukocyte antigen–group DR (HLA-DR) groove are shaped by clusters of polymorphic residues and, thus, have distinct chemical and size characteristics in different HLA-DR alleles. Each HLA-DR pocket can be characterized by "pocket profiles," a quantitative representation of the interaction of all natural amino acid residues with a given pocket. In this report we demonstrate that pocket profiles are nearly independent of the remaining HLA-DR cleft. A small database of profiles was sufficient to generate a large number of HLA-DR matrices, representing the majority of human HLA-DR peptide-binding specificity. These virtual matrices were incorporated in software (TEPITOPE) capable of predicting promiscuous HLA class II ligands. This software, in combination with DNA microarray technology, has provided a new tool for the generation of comprehensive databases of candidate promiscuous T-cell epitopes in human disease tissues. First, DNA microarrays are used to reveal genes that are specifically expressed or upregulated in disease tissues. Second, the prediction software enables the scanning of these genes for promiscuous HLA-DR binding sites. In an example, we demonstrate that starting from nearly 20,000 genes, a database of candidate colon cancer–specific and promiscuous T-cell epitopes could be fully populated within a matter of days. Our approach has implications for the development of epitope-based vaccines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Allele independence of pocket profiles leads to wide coverage of HLA-DR binding specificity.
Figure 2: Function of the TEPITOPE software.
Figure 3: Validation of TEPITOPE using large peptide repertoires.
Figure 4: Examples for tumor antigen identification by DNA microarray technology.


  1. 1

    Germain, R.N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287 –299 (1994).

  2. 2

    Topalian, S.L. MHC class II restricted tumor antigens and the role of CD4 T cells in cancer immunotherapy. Curr. Opin. Immunol. 6, 741 –745 (1994).

  3. 3

    Stern, L.J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an Influenza virus peptide. Nature 368, 215–221 (1994).

  4. 4

    Brown, J.H. et al. The three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33– 39 (1993).

  5. 5

    Ghosh, P., Amaya, M., Mellins, E. & Wiley, D.C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378, 457–462 ( 1995).

  6. 6

    Dessen, A., Lawrence, M.C., Cupo, S., Zaller, D.M. & Wiley, D.C. X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagene II. Immunity 7, 473–481 (1997).

  7. 7

    Sinigaglia, F. & Hammer, J. Defining rules for the peptide-MHC class II interaction. Curr. Opin. Immunol. 6, 52–56 (1994).

  8. 8

    Hammer, J. et al. Precise prediction of major histocompatibility complex class II peptide interaction based on peptide side chain scanning. J. Exp. Med. 180, 2353–2358 (1994).

  9. 9

    Marshall, K.W. et al. Prediction of peptide affinity to HLA DRB1*0401. J. Immunol. 154, 5927–5933 ( 1995).

  10. 10

    Brusic, V., Rudy, G., Honeyman, G., Hammer, J. & Harrison, L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14, 121–30 ( 1998).

  11. 11

    Sette, A. et al. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature 328, 395–399 (1987).

  12. 12

    Hammer, J., Sturniolo, T. & Sinigaglia, F. HLA class II peptide binding specificity and autoimmunity. Adv Immunol 66, 67-100 (1997).

  13. 13

    Hammer, J. & Sinigaglia, F. in MHC Vol. 2, Vol. 181 (eds Fernandez, N. & Butcher, G.) 197–228 (Oxford Univ. Press, New York, 1998).

  14. 14

    Hammer, J. New methods to predict MHC-binding sequences within protein antigens. Curr. Opin. Immunol. 7, 263–269 (1995).

  15. 15

    Marsh, S.G.E. Nomenclature for factors of the HLA system, update January 1998. Tissue Antigens 51, 582–583 (1998).

  16. 16

    Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays [see comments]. Nat. Biotechnol. 14, 1675–1680 (1996).

  17. 17

    Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359– 1367 (1997).

  18. 18

    Gross, D.M. et al. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281, 703– 706 (1998).

  19. 19

    Hammer, J. et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 181, 1847–1855 (1995).

  20. 20

    Tsuji, K., Aizawa, M. & Sasazuki, T. HLA 1991; Proceedings of the eleventh international histocompatibility workshop and conference (Oxford Univ. Press, New York, 1992).

  21. 21

    Manici, S. et al. Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J. Exp. Med. 189, 871–876 (1999).

  22. 22

    Topalian, S.L. et al. Melanoma-specific CD4 T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J. Exp. Med. 183, 1965 –1971 (1996).

  23. 23

    Hammer, J., Takacs, B. & Sinigaglia, F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J. Exp. Med. 176, 1007–1013 (1992).

  24. 24

    Hammer, J. et al. Promiscuous and allele-specific anchors in HLA-DR binding peptides. Cell 74, 197–203 ( 1993).

  25. 25

    Rammensee, H.G., Bachmann, J., Emmerich, N. & Stevanovic, S. SYFPEITHI: an internet database for MHC ligands and peptide motifs (access via (data extracted in 4Q, 1998).

  26. 26

    Blackwell, J.M. Parasite genome analysis. Progress in the Leishmania genome project. Trans. R. Soc. Trop. Med. Hyg. 91, 107– 110 (1997).

  27. 27

    Collins, F.S. et al. New goals for the U.S. Human Genome Project: 1998-2003. Science 282, 682–689 ( 1998).

  28. 28

    Harwood, C.R. & Wipat, A. Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett. 389, 84–87 (1996).

  29. 29

    Degrave, W., Levin, M.J., da Silveira, J.F. & Morel, C.M. Parasite genome projects and the Trypanosoma cruzi genome initiative. Mem. Inst. Oswaldo Cruz 92, 859–862 (1997).

  30. 30

    Adams, M.D. et al. Sequence identification of 2,375 human brain genes [see comments]. Nature 355, 632–634 (1992).

  31. 31

    Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651– 1656 (1991).

  32. 32

    Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C.J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693 –702 (1998).

  33. 33

    Sahin, U., Türeci, Ö. & Pfreundschuh, M. Serological identification of human tumor antigens. Curr. Opin. Immunol. 9, 709–716 (1997).

  34. 34

    Raddrizzani, L. et al. Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. J. Immunol. 159, 703–711 (1997).

  35. 35

    Panina-Bordignon, P. et al. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol. 19, 2237–2242 (1989).

  36. 36

    Ben-Mahrez, K., Thierry, D., Sorokine, I., Danna-Muller, A. & Kohiyama, M. Detection of circulating antibodies against c-myc protein in cancer patient sera. Br. J. Cancer 57, 529–534 (1988).

Download references

Author information

Correspondence to Juergen Hammer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sturniolo, T., Bono, E., Ding, J. et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17, 555–561 (1999).

Download citation

Further reading