Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A nuclease-resistant protein kinase Cα ribozyme blocks glioma cell growth

Abstract

We investigated the cleavage activity, stability, and efficacy of 2′-amino pyrimidine modified ribozymes on malignant glioma growth. A synthetic protein kinase Cα (PKCα) ribozyme with complete pyrimidine nucleotide substitution retained a comparable cleavage activity compared with the unmodified ribozyme. The half-life of the modified ribozyme in serum was increased 14,000-fold compared with the unmodified version. The PKCα modified ribozyme inhibited glioma cell growth in vitro as a result of the inhibition of PKCα gene expression. A single injection of cationic liposome ribozyme complexes into glioma tumors inhibited tumor growth, demonstrating both the efficacy of the ribozyme and a major role of PKCα in tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–847.

    Article  CAS  PubMed  Google Scholar 

  2. Cech, T. 1987. The chemistry of self-splicing RNA and RNA enzymes. Science 236: 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  3. Uhlenbeck, O.C. 1987. A small catalytic oligonucleotide. Nature 328: 596–619.

    Article  CAS  PubMed  Google Scholar 

  4. Haseloff, J. and Gerlach, W.L. 1988. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591.

    Article  CAS  PubMed  Google Scholar 

  5. Cameron, F.H. and Jennings, P.A. 1989. Specific gene suppression by engineered ribozymes in monkey cells. Proc. Natl. Acad. Sci. USA 83: 8859–8862.

    Google Scholar 

  6. Cotten, M. and Birnstiel, M.L. 1989. Ribozyme mediated destruction of RNA in vivo. EMBO J. 8: 3861–3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarver, N., Cantin, E.M., Chang, P.S., Zaia, J.A., Ladne, P.A., Stephens, D.A. et al. 1990. Ribozymes as potential anti HIV-1 therapeutic agents. Science 247: 1222–1225.

    Article  CAS  PubMed  Google Scholar 

  8. Sioud, M. and Drlica, K. 1991. Prevention of HIV-1 integrase expression in E. coli by a ribozyme. Proc. Natl. Acad. Sci. USA 88: 7303–7307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scanlon, K.J., Ishida, H., and Kashani-Sabet, M. 1994. Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc. Natl. Acad. Sci. USA 91: 11123–11127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sioud, M. 1994. Interaction between tumor necrosis factor α ribozyme and cellular proteins. J. Mol. Biol. 242: 619–629.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H., Ferbeyre, G., and Cedergren, R. 1997. Efficient hammerhead ribozyme and antisense RNA targeting in a slow ribozyme Escherichia coli mutant. Nature Biotechnology 15: 432–435.

    Article  CAS  PubMed  Google Scholar 

  12. Sioud, M. 1997. Effects of variations in length of hammerhead ribozyme antisense arms upon the cleavage of longer RNA substrates. Nucleic Acids Res. 25: 333–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H., and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317.

    Article  CAS  PubMed  Google Scholar 

  14. Williams, D.M., Pieken, W.A., and Eckstein, F. 1992. Function of specific 2′-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2′ modifications. Proc. Natl. Acad. Sci. USA 89: 918–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heidenreich, O., Benseler, F., Fahrenholz, A., and Eckstein, F. 1994. High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J. Biol. Chem. 269: 2131–2138.

    CAS  PubMed  Google Scholar 

  16. Beigelman, L., McSwiggin, J.A., Draper, K.G., Gonzalez, C., Jensen, K., Karpeosky, A.M. et al. 1995. Chemical modification of hammerhead ribozymes. J. Biol. Chem. 270: 25702–25708.

    Article  CAS  PubMed  Google Scholar 

  17. Burgin, A.B., Conzalez, C., Matulic-Adamic, J., Karpeisky, A.M., Isman, N., McSwiggin, J.A. et al. 1996. Chemically modified hammerhead ribozymes with improved catalytic rates. Biochemistry 35: 14090–14097.

    Article  CAS  PubMed  Google Scholar 

  18. Scherr, M., Grez, M., Ganser, A., and Engels, J.W. 1997. Specific hammerhead ribozyme-mediated cleavage of mutant N-ras mRNA in vitro and ex vivo. J. Biol. Chem. 272: 14304–14313.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi, J.J. 1995. Controlled, targeted intracellular expression of ribozymes: Progress and problems. Trends Biotech. 13: 301–306.

    Article  CAS  Google Scholar 

  20. Nishizuka, Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614.

    Article  CAS  PubMed  Google Scholar 

  21. Couldwell, W.T., Uhm, J.H., Anterl, J.P., and Young, V.W. 1991. Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery 29: 880–887.

    Article  CAS  PubMed  Google Scholar 

  22. Deen, F.D., Chiarodo, A., Grimm, E.A., Fike, J.R., Israel, M.A., Kun, L.E. et al. 1993. Brain tumor working group report on the 9th International Conference on Brain Tumor Research and Therapy. J. Neurooncol. 16: 243–272.

    Article  CAS  PubMed  Google Scholar 

  23. Heidenreich, O., Pieken, W., and Eckstein, F. 1993. Chemically modified RNA. FASEB J. 7: 90–96.

    Article  CAS  PubMed  Google Scholar 

  24. Nabel, G.J., Nabel, E.G., Zang, Z.Y., Fox, B.A., PLantz, G.E., Gao, X. et al. 1993. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90: 11307–11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mella, O., Bjerkvig, R., Schem, B.C., Dahl, O., and Laerum, O.D. 1990. A cerebral glioma model for experimental therapy and in vivo invasion studies in syngeneic BDIX rats. J. Neurooncology 9: 93–104.

    Article  CAS  Google Scholar 

  26. Saxena, S.K., and Ackerman, E.J. 1990. Ribozymes correctly cleave a model substrate and endogenous RNA in vivo. J. Biol Chem. 265: 17106–17109.

    CAS  PubMed  Google Scholar 

  27. Kroemer, G. 1997. The prot-oncogene Bcl-2 and its role in regulating apoptosis. Nat.Med. 3: 614–620.

    Article  CAS  PubMed  Google Scholar 

  28. Aurup, H., Williams, D.M., and Eckstein, F. 1992. 2′-fluoro and 2′-amino-2′deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31: 9636–9641.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S-W. and Sullenger, B.A. 1996. Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes. J. Exp. Med. 184: 315–324.

    Article  CAS  PubMed  Google Scholar 

  30. Sioud, M. and Jespersen, L. 1996. Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J. Mol. Biol. 257: 775–789.

    Article  CAS  PubMed  Google Scholar 

  31. Chomczynski, P., and Sacchi, N. 1987. Single step method of RNA Isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshitaka, O. 1988. Nucleotide sequences of cDNAs for α and γ subspecies of rat brain protein kinase C. Nucl. Acids Res. 16: 5911–5912.

    Google Scholar 

  33. Sousa, R., and Padilla, R. 1995. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 14: 4609–4621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sioud, M., Sørensen, D. A nuclease-resistant protein kinase Cα ribozyme blocks glioma cell growth. Nat Biotechnol 16, 556–561 (1998). https://doi.org/10.1038/nbt0698-556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0698-556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing