Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA

Abstract

This study was designed to evaluate the hypothesis that administration of a replication-deficient, recombinant adenovirus vector to the epithelial surface of the respiratory tract can be used to deliver a recombinant protein to the systemic circulation in sufficient quantities to evoke a systemic response appropriate to the recombinant protein. We administered AdCMV.TPO—an adenovirus vector containing an expression cassette coding for the human thrombopoietin (TPO) cDNA—to the respiratory epithelium of immunocompetent Balb/c mice. Over the following week, serum human TPO levels were elevated, platelet levels increased more than sixfold, and megakaryocytosis was evident in bone marrow. This strategy may be a useful approach to the nonparenteral administration of a variety of therapeutic recombinant proteins, such as those relevant to clotting, endocrine function, and bone-marrow function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaushansky, K. and Karplus, P.A. 1993. Hematopoietic growth factors: understanding functional diversity in structural terms. Blood 82, 3229–3240.

    CAS  PubMed  Google Scholar 

  2. Whetton, A.D. and Dexter, T.M. 1993. Influence of growth factors and substrates on differentiation of haemopoietic stem cells. Curr. Opin. Cell Biol. 5, 1044–1049.

    Article  CAS  Google Scholar 

  3. Appelbaum, F.R. 1995. Allogeneic marrow transplantation and the use of hematopoietic growth factors. Stem Cells (Dayt.) 13, 344–350.

    Article  CAS  Google Scholar 

  4. Neidhart, J.A. 1993. Hematopoietic cytokines. Current use in cancer therapy. Cancer 72, 3381–3386.

    Article  CAS  Google Scholar 

  5. Descamps, V., Blumenfeld, N., Villeval, J.L., Vainchenker, W., Perricaudet, M., and Beuzard, Y. 1994. Erythropoietin gene transfer and expression in adult normal mice: use of an adenovirus vector. Hum. Gene Ther. 5, 979–985.

    Article  CAS  Google Scholar 

  6. Setoguchi, Y., Danel, C., and Crystal, R.G. 1994. Stimulation of erythropoiesis by in vivo gene therapy: physiologic consequences of transfer of the human erythropoietin gene to experimental animals using an adenovirus vecto. Blood 84, 2946–2953.

    CAS  PubMed  Google Scholar 

  7. Tripathy, S.K., Black, H.B., Goldwasser, E., and Leiden, J.M. 1996. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 2, 545–550.

    Article  CAS  Google Scholar 

  8. Tripathy, S.K., Goldwasser, E., Lu, M.M., Barr, E., and Leiden, J.M. 1994. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc. Natl. Acad. Sci. USA 91, 1557–1156

    Article  Google Scholar 

  9. Xing, Z., Braciak, T., Ohkawara, Y., Sallenave, J.M., Foley, R., Sime, P.J., et al. 1996. Gene transfer for cytokine functional studies in the lung: the multifunctional role of gm-csf in pulmonary inflammation. J. Leukoc. Biol. 59, 481–488.

    Article  CAS  Google Scholar 

  10. Ohwada, A., Rafii, S., Moore, M.A., and Crystal, R.G. 1996. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation- and chemotherapy-induced bone marrow suppression. Blood 88, 778–784.

    CAS  PubMed  Google Scholar 

  11. Xing, Z., Ohkawara, Y., Jordana, M., Graham, F., and Gauldie, J. 1996. Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia. monocytosis, and fibrotic reactions. J. Clin. Invest. 97, 1102–1110

    Article  CAS  Google Scholar 

  12. Siegfried, W., Rosenfeld, M., Stier, L., Stratford-Perricaudet, L., Perricaudet, M., Pavirani, A., et al. 1995. Polarity of secretion of alpha 1-antitrypsin by human respiratory epithelial cells after adenoviral transfer of a human α1-antitrypsin cDNA. Am. J. Respir. Cell. Mol. Biol. 12, 379–384.

    Article  CAS  Google Scholar 

  13. Crystal, R.G., McElvaney, N.G., Rosenfeld, M.A., Chu, C.S., Mastrangeli, A., Hay, J.G., et al. 1994. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat. Genet. 8, 42–51.

    Article  CAS  Google Scholar 

  14. Mastrangeli, A., Danel, C., Rosenfeld, M.A., Stratford-Perricaudet, L., Perricaudet, M., Pavirani, A., et al. 1993. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J. Clin. Invest. 91, 225–234.

    Article  CAS  Google Scholar 

  15. Rosenfeld, M.A., Yoshimura, K., Trapnell, B.C., Yoneyama, K., Rosenthal, E.R., Dalemans, W., et al. 1992. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155.

    Article  CAS  Google Scholar 

  16. Rosenfeld, M.A., Siegfried, W., Yoshimura, K., Yoneyama, K., Fukayama, M., Stier, L.E., et al. 1991. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434.

    Article  CAS  Google Scholar 

  17. Engelhardt, J.F., Simon, R.H., Yang, Y., Zepeda, M., Weber-Pendleton, S., Doranz, B., et al. 1993. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: biological efficacy study. Hum. Gene Ther. 4, 759–769.

    Article  CAS  Google Scholar 

  18. Zabner, J., Petersen, D.M., Puga, A.P., Graham, S.M., Couture, L.A., Keyes, L.D., et al. 1994. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat. Genet. 6, 75–83.

    Article  CAS  Google Scholar 

  19. Bout, A., Perricaudet, M., Baskin, G., Imler, J.L., Scholte, B.J., Pavirani, A., et al. 1994. Lung gene therapy: in vivo adenovirus-mediated gene transfer to rhesus monkey airway epithelium. Hum. Gene Ther. 5, 3–10.

    Article  CAS  Google Scholar 

  20. Yei, S., Mittereder, N., Wert, S., Whitsett, J.A., Wilmott, R.W., and Trapnell, B.C. 1994. In vivo evaluation of the safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cdna to the lung. Hum. Gene Ther. 5, 731–744.

    Article  CAS  Google Scholar 

  21. Crystal, R.G., Mastrangeli, A., Sanders, A., Cooke, J., King, T., Gilbert, F., et al. 1994. Evaluation of repeat administration of a replication deficient, recombinant adenovirus containing the normal cystic fibrosis transmembrane conductance regulator cDNA to the airways of individuals with cystic fibrosis. RAC Report 9409–085.

  22. Crystal, R.G., Jaffe, A., Brody, S., Mastrangeli, A., McElvaney, N.G., Rosenfeld, M., et al. 1992. A phase 1 study, in cystic fibrosis patients, of the safety, toxicity, and biological efficacy of a single administration of a replication deficient, recombinant adenovirus carrying the cDNA of the normal cystic fibrosis transmembrane conductance regulator gene in the lung. RAC Report 9212–034.

  23. Broudy, V.C. and Kaushansky, K. 1995. Thrombopoietin, the c-mpl ligand, is a major regulator of platelet production. J. Leukoc. Biol. 57, 719–725.

    Article  CAS  Google Scholar 

  24. Kaushansky, K. 1995. Thrombopoietin: the primary regulator of platelet production. Blood 86, 419–431.

    CAS  PubMed  Google Scholar 

  25. Chandra, T., Miller, I.F., and Yeates, D.B. 1992. A pore transport model for pulmonary alveolar epithelium. Ann. Biomed. Eng. 20, 481–494.

    Article  CAS  Google Scholar 

  26. Effros, R.M. 1997. Permeability of the blood-gas barrier, pp. 1567–1580 in The lung, scientific foundations. Crystal, R.G., West, J.B., Weibel, E.R., and Barnes, P.J. (eds). Lippincott-Raven Publishers, Philadelphia, PA.

    Google Scholar 

  27. Parker, J.C., Rippe, B., and Taylor, A.E. 1986. Fluid filtration and protein clearances through large and small pore populations in dog lung capillaries. Microvasc. Res. 31, 1–17.

    Article  CAS  Google Scholar 

  28. Rippe, B. and Crone, C. 1991. Pores and intercellular junctions, pp. 349–357 in The lung: scientific foundations. Crystal, R.G., West, J.B., Barnes, P.J., Cherniack, N.S., and Weibel, E.R. (eds). Raven Press, New York.

    Google Scholar 

  29. Hersh, J., Crystal, R.G., and Bewig, B. 1995. Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector. Gene Therapy 2, 124–131.

    CAS  PubMed  Google Scholar 

  30. de Sauvage, F.J., Hass, P.E., Spencer, S.D., Malloy, B.E., Gurney, A.L., Spencer, S.A., et al. 1994. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-mpl ligand. Nature 369, 533–538.

    Article  CAS  Google Scholar 

  31. Frey, B.M., Cannizzo, S., Crystal, R.G., and Moore, M.A.S. 1996. Expression of human thrombopoietin transgene delivered by an adenovirus based strategy is dependent on host immune competence. Exp. Hematol. 24, 1056.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannizzo, S., Frey, B., Raffi, S. et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol 15, 570–573 (1997). https://doi.org/10.1038/nbt0697-570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0697-570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing