Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

αv Integrins as receptors for tumor targeting by circulating ligands


Phage displaying an Arg-Gly-Asp (RGD)-containing peptide with a high affinity for αv integrins homed to tumors when injected intravenously into tumor-bearing mice. A substantially higher amount of αv-directed RGD phage than control phage was recovered from malignant melanomas and breast carcinoma. Antibodies detected the αv-directed RGD phage in tumor blood vessels, but not in several normal tissues. These results show that the αv integrins present in tumor blood vessels can bind circulating ligands and that RGD peptides selective for these integrins may be suitable tools in tumor targeting for diagnostic and therapeutic purposes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammer, D.A. 1990. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9: 175–189.

    CAS  Article  Google Scholar 

  2. 2

    Zetter, B.R. 1990. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322: 605–612.

    CAS  Article  Google Scholar 

  3. 3

    Springer, T.A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.

    CAS  Article  Google Scholar 

  4. 4

    Butcher, E.C. and Picker, L.J. 1996. Lymphocyte homing and homeostasis. Science 272: 60–66.

    CAS  Article  Google Scholar 

  5. 5

    Goetz, D.J., El-Sabban, M.E., Hammer, D.A., and Pauli, B.U. 1996. Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow. Int. J. Cancer 65: 192–199.

    CAS  Article  Google Scholar 

  6. 6

    Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.

    CAS  Article  Google Scholar 

  7. 7

    Baillie, C.T., Winslet, M.C., and Bradley, N.J. 1995. Tumour vasculature—a potential therapeutic target. Br. J. Cancer 72: 257–267.

    CAS  Article  Google Scholar 

  8. 8

    Burrows, F.J. and Thorpe, P.E. 1994. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64: 155–174.

    CAS  Article  Google Scholar 

  9. 9

    Buckle, R. 1994. Vascular targeting and the inhibition of angiogenesis. Ann. Oncol. 4(suppl.): 45–50.

    Google Scholar 

  10. 10

    Mustonen, T. and Alitalo, K. 1995. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129: 895–898.

    CAS  Article  Google Scholar 

  11. 11

    Lappi, D.A. 1995. Tumor targeting through fibroblast growth factor receptors. Semin. Cancer Biol. 6: 279–288.

    CAS  Article  Google Scholar 

  12. 12

    Martiny-Baron, G. and Marme, D. 1995. VEGF-mediated tumor angiogenesis: a new target for cancer therapy. Curr. Opin. Biotechnol. 6: 675–680.

    CAS  Article  Google Scholar 

  13. 13

    Rettig, W.J., Garin-Chesa, P., Healey, J.H., Su, S.L., Jaffe, E.A., and Old, L.J. 1992. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc. Natl. Acad. Sci. USA 89: 10832–10836.

    CAS  Article  Google Scholar 

  14. 14

    Brooks, P.C., Clark R.A., and Cheresh, D.A. 1994. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571.

    CAS  Article  Google Scholar 

  15. 15

    Friedlander, M., Brooks, P.C., Sharffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270: 1500–1502.

    CAS  Article  Google Scholar 

  16. 16

    Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., et al. 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.

    CAS  Article  Google Scholar 

  17. 17

    Brooks, P.C., Stromblad S., Klemle R., Visscher D., Sarkar F.H., and Cheresh, D.A. 1995. Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96: 1815–1822.

    CAS  Article  Google Scholar 

  18. 18

    Hammes, H.-P., Brownlee, M., Joonczyk, A., Sutter, A., and Preissner, K.T. 1996. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature. Med. 5: 529–533.

    Article  Google Scholar 

  19. 19

    Conforti, G., Dominguew-Jimenez, C., Zanetti, A., Gimbrone, M.A., Cremona, O., Marchisio, P.C., et al. 1992. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 80: 437–446.

    CAS  PubMed  Google Scholar 

  20. 20

    Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 21: 228–257.

    Article  Google Scholar 

  21. 21

    Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12: 697–715.

    CAS  Article  Google Scholar 

  22. 22

    Koivunen, E., Wang, B., and Ruoslahti, E. 1995. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/Technology 13: 265–270.

    CAS  PubMed  Google Scholar 

  23. 23

    Geter, M.R., Trigg, M.E., and Merril, C.R. 1973. Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246: 221–223.

    Article  Google Scholar 

  24. 24

    Shockley, T.R., Lin, K., Nagy, J.A., Tompkins, R.G., Dvorak, H.F., and Yarmush, M.L 1991. Penetration of tumor tissue by antibodies and other immunoproteins. Ann. N.Y. Acad. Sci. 618: 367–382.

    CAS  Article  Google Scholar 

  25. 25

    Dvorak, H.F., Nagy, J.A., and Dvorak, A.M. 1991. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85.

    CAS  PubMed  Google Scholar 

  26. 26

    Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27–31.

    CAS  Article  Google Scholar 

  27. 27

    Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    CAS  Article  Google Scholar 

  28. 28

    Rak, J.W., St. Croix, B.D., and Kerbel, R.S. 1995. Consequences of angiogenesis for tumor progression, metastasis and cancer. Anticancer Drugs 6: 3–18.

    CAS  Article  Google Scholar 

  29. 29

    Price, J.E., Polyzos, A., Zhang, R.D., and Daniels, L.M. 1990. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50: 717–721.

    CAS  Google Scholar 

  30. 30

    Nicolson, G.L., Inoue, T., Van Pelt, C.S., and Cavanaugh, P.G. 1990. Differential expression of a Mr. approximately 90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 50: 515–520.

    CAS  PubMed  Google Scholar 

  31. 31

    Welch, D.R., Bisi, J.E., Miller, B.E., Conaway, D., Seftor, E.A., Yohem, K.H., et al. 1991. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47: 227–237.

    CAS  Article  Google Scholar 

  32. 32

    Montesano, R., Pepper, M.S., Möhle-Steinlein, U., Risau, W., Wagner, E.F., and Orci, L. 1990. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435–445.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pasqualini, R., Koivunen, E. & Ruoslahti, E. αv Integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15, 542–546 (1997).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing