Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Fiber-Optic Carbon Dioxide Sensor for Fermentation Monitoring

Abstract

We have developed a fiber-optic chemical sensor for determining dissolved carbon dioxide and assessed its performance for the on-line monitoring of fermentation. The sensor operates on the Severinghaus pCO2 electrode principle; it consists of a pH sensitive dye (hydroxypyrenetrisulfonic acid, HPTS) in an HCO3 buffer solution entrapped in an expanded PTFE support held at the distal end of an optical fiber by a gas permeable membrane. CO2 crossing the membrane produces a pH change in the indicator solution. This change is related to the external CO2 concentration by the Henderson-Hasselbach equation. The sensor has a reversible working dissolved CO2 dynamic range of 0–0.25 atm. The sensor can be auto-claved without affecting its calibration. Results are presented for the on-line determination of CO2 production in beer fermentation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Mou, D.-G. 1983. Process dynamics: instrumentation and control. Biotech. Adv. 1: 229–245.

    CAS  Article  Google Scholar 

  2. Edmonds, T.E. 1988. Chemical Sensors. Blackie, Glasgow.

    Book  Google Scholar 

  3. Clarke, D.J., Calder, M.R., Carr, R.J.G., Blake-Coleman, B.C., Moody, S.C. and Collidge, T.A. 1985. The development and application of biosensing devices for bioreactor monitoring and control. Biosensors 1: 213–320.

    CAS  Article  Google Scholar 

  4. Lee, Y.H. and Tsao, G.T. 1979. Dissolved oxygen electrodes. Adv. Biochem. Eng. 13: 35–86.

    Google Scholar 

  5. Shoda, M. and Ishikawa, Y. 1981. Carbon dioxide sensor for fermentation monitoring. Biotech. Bioeng. 23: 461–466.

    CAS  Article  Google Scholar 

  6. Puhar, E., Einsels, A., Buhler, H. and Ingold, W. 1980. Steam sterilizable pCO2 electrode. Biotech. Bioeng. 22: 2411–2416.

    CAS  Article  Google Scholar 

  7. Brooks, S.L., Ashby, R.E., Turner, A.P.F., Calder, M.R. and Clarke, D.J. 1987. Development of an on-line glucose sensor for fermentation monitoring. Biosensors 1: 45–56.

    Article  Google Scholar 

  8. Wolfbeis, O.S. 1990. Fiber-optic sensors in bioprocess control, p. 95–125. In: Sensors in Bioprocess Control. Twork, J. V. and Yacynych, A. M. (Eds.). Marcel Dekker Inc. New York.

    Google Scholar 

  9. Agayn, V.I. and Walt, D.R. 1993. Fiber-optic sensor for continuous monitoring of fermentation pH. Bio/Technology 11: 726–729.

    CAS  PubMed  Google Scholar 

  10. Kroneis, H.W. and Marsoner, H.J. 1983. A fluorescence-based sterolizable oxygen probe for use in bioreactors. Sens. Actuators 4: 587–592.

    CAS  Article  Google Scholar 

  11. Holobar, A, Bernhard, H.W., Trettnak, W., Benes, R., Lehmann, H., Rodriguez, N.V., Wollschlager, A., O'Leary, P., Raspor, P. and Wolfbeis, O.S. 1993. Experimental results on an optical pH measurement system for bioreactors. Sens. Actuators B. 11: 425–430.

    CAS  Article  Google Scholar 

  12. Weigl, B.H., Holobar, A., Trettnak, W., Klimant, T., Kraus, H., O'Leary, P. and Wolfbeis, O.S. 1994. Optical triple sensor for measuring pH, oxygen and carbon dioxide. J. Biotech. 32: 127–138.

    CAS  Article  Google Scholar 

  13. Severinghaus, J.W. and Bradley, A.F. 1958. Electrodes for blood pO2 and pCO2 determination. J. Appl. Physiol. 13: 515–520.

    CAS  Article  Google Scholar 

  14. Jensen, M.A. and Rechnitz, G.A. 1979. Response time characteristics of the pCO2 electrode. Anal. Chem. 51: 1972–1977.

    CAS  Article  Google Scholar 

  15. Vurek, G.G., Peterson, J.I., Goldstein, S.R. and Severinghaus, J.W. 1982. Fiber optic pCO2 probe. Fed. Proc., Fed. Am. Soc. Exp. Biol. 41: 1484.

    Google Scholar 

  16. Mills, A., Chang, Q. and McMurray, N. 1992. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal. Chem. 64: 1383–1389.

    CAS  Article  Google Scholar 

  17. Mills, A. and Chang, Q. 1993. Fluorescence plastic thin-film sensor for carbon dioxide. Analyst. 118: 839–843.

    CAS  Article  Google Scholar 

  18. Zhujun, Z. and Seitz, W.R. 1984. A carbon dioxide sensor based on fluorescence. Anal. Chim. Acta. 160: 305–309.

    Article  Google Scholar 

  19. Kawabata, Y., Kamichika, T., Imasaka, T. and Ishibashi, N. 1989. Fiber optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethylene glycol) membrane. Anal. Chim. Acta. 219: 223–229.

    CAS  Article  Google Scholar 

  20. Munkholm, C., Walt, D.R. and Milanovich, F.P. 1988. A fiber-optic sensor for CO2 measurement. Talanta. 35: 109–112.

    CAS  Article  Google Scholar 

  21. Parker, J.W., Laksin, O., Yu, C., Lau, M.-L., Klima, S., Fisher, R., Scott, I. and Atwater, B.W. 1993. Fiber-optic sensors for pH and carbon dioxide using a self referencing dye. Anal. Chem. 65: 2329–2334.

    CAS  Article  Google Scholar 

  22. Wolfbeis, O.S., Furlinger, E., Kroneis, H. and Marsoner, H. 1983. Fluorimetric analysis: 1. A study of fluorescent indicators for measuring near neutral (“physiological”) pH values. Fresenius Z. Anal. Chem. 314: 119–124.

    CAS  Article  Google Scholar 

  23. Jones, J.E. and Spooncer, R.C. 1983. Two wavelength referencing of an optical fiber intensity-modulated sensor. J. Phys. E. 16: 1124–1126.

    CAS  Article  Google Scholar 

  24. Reuelta, J.M., Garcia-Rinaldi, R., Val, F., Grego, R. and Duran, C.M.G. 1985. Expanded poly-tetrafluoroethylene surgical membrane for pericardial closure. J. Thoracic Cardiovascular. Surg. 89: 451–455.

    Google Scholar 

  25. Tran, C.N.B. and Walt, D.R. 1989. Plasma modification and collagen binding to PTFE grafts. J. Colloid Interfac. Sci. 132: 373–381.

    CAS  Article  Google Scholar 

  26. Bertini, I., Luchinat, C. and Monnanni, R. 1987. The enzyme carbonic anhydrase, p. 139–168. In: Carbon Dioxide as a Source of Carbon. Biochemical and Chemical Uses. Aresta. M. and Forti, G. (Eds.). NATO ASI Series C—mathematical and physical science. 206, D. Reidel Publishing Co., Dordrecht.

    Chapter  Google Scholar 

  27. Udenfriend, S. 1962. Fluorescence assay in biology and medicine. p. 106–108. In: Molecular biology. An International Series of Monographs and Textbooks. Kaplan, N. A. and Scheraga, H. A. (Eds.). Academic Press, New York.

    Google Scholar 

  28. King, E. 1965. The International Encyclopedia of Physical Chemistry and Chemical Physics. Vol 4. Acid-base Equilibrium. Guggenheim, E. A., Mayer, J. E. and Tbmpkins, F. C. (Eds.). The Macmillan Company, New York.

    Google Scholar 

  29. Daoud, I.S. 1990. Yeast handling: Assessment of yeast quality. Brewers Guardian. April 1990. p. 10–11.

    Google Scholar 

  30. Trevors, J.T., Merrick, R.L., Russell, I. and Stewart, G.G. 1983. A comparison of methods for assessing yeast viability. Biotech. Lett. 5: 131–134.

    Article  Google Scholar 

  31. Wheatcroft, R., Lim, Y.H., Hawthorne, D.B., Clarke, B.J. and Kavanagh, T.E. 1988. Proc. Int. Conv. Inst. Brew. (Auz. N.Z. Sect.). 20: 193–199.

    Google Scholar 

  32. Kara, B.V., Simpson, W.J. and Hammond, J.R.M. 1988, Prediction of the fermentation performance of brewing yeast with the acidification power (AP) test. J. Inst. Brew. 94: 153–158.

    Article  Google Scholar 

  33. Quain, D.E. and Tibb, R.S. 1982. Importance of glycogen in brewing yeast. M.B.A.A. Tech. Quarterly 19: 29–33.

    CAS  Google Scholar 

  34. Daoud, I.S. and Searle, B.A. 1987. Yeast vitality and fermentation performance, p. 108. Mono. XII. E.B.C. Symp. Brewers' Yeast, Vuoranto.

    Google Scholar 

  35. Albery, W.J., Appleton, M.S., Pragnell, T.R.D., Pritchard, M., Uttamlal, M., Fieldgate, L.E., Lawrence, D.R. and Sharpe, F.R. 1994. An electrochemical workstation for the monitoring of beer fermentation. J. Appl. Electrochem. 24: 521–525.

    CAS  Article  Google Scholar 

  36. Daoud, I.S. and Searle, B.A. 1990. Online monitoring of brewery fermentation by measurement of CO2 evolution rate. J. Inst. Brew. 96: 297–302.

    CAS  Article  Google Scholar 

  37. Albery, W.J. and Uttamlal, M. 1994. A CO2 titration electrode: part 1. theoretical description. J. Appl. Electrochem. 24: 8–13.

    CAS  Google Scholar 

  38. Jones, R.P. and Greenfield, P.F. 1982. Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb. Technol. 4: 210–223.

    CAS  Article  Google Scholar 

  39. Edwards, A.G. and Ho, C.S. 1988. Effect of carbon dioxide on Penicillium chrysogenum: An autoradiographic study. Biotech. Bioeng. 32: 1–7.

    CAS  Article  Google Scholar 

  40. Akashi, K., Shibai, H. and Hirose, Y. 1979. Inhibitory effects of carbon dioxide and oxygen in amino acid fermentation. J. Ferment. Technol. 57: 317–320.

    CAS  Google Scholar 

  41. Walt, D.R., Gabor, G. and Goyet, C. 1993. Multiple-indicator fiber-optic sensor for high resolution pCO2 seawater measurements. Anal. Chim. Acta. 274: 47–52.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Walt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uttamlal, M., Walt, D. A Fiber-Optic Carbon Dioxide Sensor for Fermentation Monitoring. Nat Biotechnol 13, 597–601 (1995). https://doi.org/10.1038/nbt0695-597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0695-597

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing