Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

N-Glycosylation of Recombinant Human Interferon-γ Produced in Different Animal Expression Systems

Abstract

Recombinant human interferon-γ (IFN-γ) was expressed in Chinese hamster ovary cells, baculovirus-infected Sf9 insect cells and the mammary gland of transgenic mice. The N-linked carbohydrate populations associated with both Asn25 and Asn97 glycosylation sites were characterized by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) in combination with exoglycosidase array sequencing. A site-specific analysis of dual (2N) and single (IN) site-occupancy variants of IFN-γ derived from Chinese hamster ovary cells showed that N-glycans were predominantly of the complex bi- and triantennary type. Although Asn25-linked glycans were substituted with a core fucose residue, Asn97 in N-glycans were predominantly non-fucosylated, and truncated complex and high-mannose oligosaccha-ride chains were also evident. Transgenic mouse derived IFN-γ exhibited considerable site-specific variation in N-glycan structures. Asn97-linked carbohydrates were of the complex, core fucosylated type, Asn25-linked carbohydrates were mainly of the oligomannose type, with smaller proportions of hybrid and complex N-glycans. Carbohydrates associated with both glycosylation sites of IFN-γ from Sf9 insect cells were mainly tri-mannosyl core structures, with fucosylation confined to the ASn25 site. These data demonstrate the profound influence of host cell type and protein structure on the N-glycosylation of recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jenkins, N., and Curling, E.M. 1994. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, E.U., Roth, J., and Paulson, J.C. 1989. Alteration of terminal glyco-sylation sequences on N-finted oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J. Biol. Chem. 264: 13848–13855.

    CAS  PubMed  Google Scholar 

  3. Maiorella, B.L., Inlow, D., Shauger, A., and Harano. D. 1988. Large scale insect cell culture media for recombinant protein production. Bio/Technology 6: 1406–1410.

    CAS  Google Scholar 

  4. Denman, J., Hayes, M., O'Day, C., Edmonds, T., Bartlett, C., Hirani, S., Ebert, K.M., Gordon, K., and McPherson, J.M. 1991. Transgenic expression of a variant of human tissue-type plasminogen-activator in goat milk: purification and characterization of the recombinant enzyme. Bio/Technology 9: 839–843.

    CAS  Google Scholar 

  5. Mutsaers, J.H.G., Kamerling, J.P., Devos, R., Guisez, Y., Friers, W., and Vliegenthart, J.F.G. 1986. Structural studies of the carbohydrate chains of gamma interferon. Eur. J. Biochem. 156: 651–654.

    Article  CAS  PubMed  Google Scholar 

  6. Riske, F.J., Cullen, B.R., and Chizzonite, R. 1991. Characterization of human interferon-gamma and human interleukin-2 from recombinant mammalian cell lines and peripheral blood lymphocytes. Lymphokine Res. 10: 213–218.

    CAS  Google Scholar 

  7. Curling, E.M., Hayter, P.M., Baines, A.J., Bull, A.T., Gull, K., Strange, P.G., and Jenkins, N. 1990. Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272: 333–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayter, P.M., Curling, E.M., Gould, M.L., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., and Bull, A.T. 1993. The effect of dilution rate on CHO cell physiology and recombinant interferon-gamma production in glucose-limited chemostat cultures. Biotechnol. Bioeng. 42: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  9. Hayter, P.M., Curling, E.M., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., and Bull, A.T. 1991. Chinese hamster ovary growth and interferon production kinetics in stirred batch culture. Appl. Microbiol. Biotechnol. 34: 559–564.

    Article  CAS  PubMed  Google Scholar 

  10. Sutton, C.W., O'Neill, J.A., and Cottrell, J.S. 1994. Site specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 218: 34–46.

    Article  CAS  PubMed  Google Scholar 

  11. Rinderknecht, E., O'Connor, B.H., and Rodriguez, H. 1984. Natural human interferon-gamma. Complete amino acid sequence and determination of sites of glycosylation. J. Biol. Chem. 259: 6790–6797.

    CAS  PubMed  Google Scholar 

  12. Jenkins, N., Wingrove, C., Strange, P.G., Baines, A.J., Curling, E.M., Freedman, R.B., and Pucci, P. 1993. Changes in the glycosylation pattern of interferon-gamma during batch culture, p. 231–235. In: Animal Cell Technology: Basic & Applied Aspects, Vol. 5. Kaminogawa, S., Ametani, A. and Hachimura, S. (Eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  13. Gavel, Y., and von Heijne, G. 1990. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implication for protein engineering. Protein Eng. 3: 433–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bause, E. 1984. Model studies on N-glycosylation of proteins. Biochem. Soc. Trans. 12: 514–517.

    Article  CAS  PubMed  Google Scholar 

  15. Ealick, S.E., Cook, W.J., Vijaykumar, S., Carson, M., Nagabhushan, T.L., Trotta, P.P., and Bugg, C.E. 1991. 3-dimensional structure of recombinant human interferon-gamma. Science 252: 698–702.

    Article  CAS  PubMed  Google Scholar 

  16. Grzesiek, S., Dobeli, H., Gentz, R., Garotta, G., Labhardt, A.M., and Bax, A. 1992. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry 31: 8180–8190.

    Article  CAS  PubMed  Google Scholar 

  17. Edge, C.J., Rademacher, T.W., Wormald, M.R., Parekh, R.B., Butters, T.D., Wing, D.R., and Dwek, R.A. 1992. Fast sequencing of oligosaccharides: the reagent-array analysis method. Proc. Natl. Acad. Sci. USA 89: 6338–6342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rudd, P.M., Scragg, I.G., Coghill, E., and Dwek, R.A. 1992. Separation and analysis of the glycoform populations of ribonuclease B using capillary electrophoresis. Glycoconjugate J. 9: 86–91.

    Article  CAS  Google Scholar 

  19. Weisshaar, G., Hiyama, J., Renwick, A.G., and Nimtz, M.M. 1991. NMR investigations of the N-linked oligosaccharides at individual glycosylation sites of human lutropin. Eur. J. Biochem. 195: 257–268.

    Article  CAS  PubMed  Google Scholar 

  20. Hiyama, J., Weisshaar, G., and Renwick, A.G. 1992. The asparagine-linked oligosaccharides at individual glycosylation sites in human thyrotrophin. Glycobiology 2: 401–409.

    Article  CAS  PubMed  Google Scholar 

  21. Weisshaar, G., Hiyama, J., and Renwick, A.G. 1991. Site-specific N-glycosylation of human chorionic gonadotrophin—structural analysis of glycopeptides. by one- and two-dimensional 1H NMR spectroscopy. Glycobiology 1: 393–404.

    Article  CAS  PubMed  Google Scholar 

  22. Kornfeld, R., and Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  PubMed  Google Scholar 

  23. Hubbard, S.C. 1988. Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing. J. Biol. Chem. 263: 19303–19317.

    CAS  PubMed  Google Scholar 

  24. Gramer, M.J., and Goochee, C.F. 1993. Glycosidase activities in Chinese-hamster ovary cell lysate and cell-culture supernatant. Biotechnol. Prog. 9: 366–373.

    Article  CAS  PubMed  Google Scholar 

  25. Huberty, M.C., Vath, J.E., Yu, W., and Martin, S.A. 1993. Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. Anal. Chem. 65: 2791–2800.

    Article  CAS  PubMed  Google Scholar 

  26. Rohrer, J.S., Cooper, G.A., and Townsend, R.R. 1993. Identification, quantification, and characterization of glycopeptides in reversed-phase HPLC separations of glycoprotein proteolytic digests. Anal. Biochem. 212: 7–16.

    Article  CAS  PubMed  Google Scholar 

  27. Tandai, M., Endo, T., Sasaki, S., Masuho, Y., Kochibe, N., and Kobata, A. 1991. Structural study of the sugar moieties of monoclonal antibodies secreted by human-mouse hybridoma. Arch. Biochem. Biophys. 291: 339–348.

    Article  CAS  PubMed  Google Scholar 

  28. Lund, J.T., Takahashi, N., Nakagawa, H., Goodall, M., Bentley, T., Hindley, S.A., Tyler, R., and Jefferis, R. 1993. Control of IgG/Fc glycosylation: a comparison of oligosaccharides from chimeric human/mouse and mouse subclass immunoglobulin Gs. Mol. Immunol. 30: 741–748.

    Article  CAS  PubMed  Google Scholar 

  29. Borrebaeck, C.A.K., Malmborg, A.C., and Ohlin, M. 1993. Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol. Today 14: 477–479.

    Article  CAS  PubMed  Google Scholar 

  30. Davidson, D.J.C., and Castellino, F.J. 1991. Asparagine-linked oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry 30: 6165–6174.

    CAS  PubMed  Google Scholar 

  31. Chen, W., and Bahl, O.P. 1991. Recombinant carbohydrate and selenomethionyl variants of human choriogonadotropin. J. Biol. Chem. 266: 8192–8197.

    CAS  PubMed  Google Scholar 

  32. Manneberg, M., Friedlein, A., Kurth, H., Lahm, H.W., and Fountoulakis, M. 1994. Structural-analysis and localization of the carbohydrate moieties of a soluble human interferon-gamma receptor produced in baculovirus-infected insect cells. Protein Sci. 3: 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aeed, P.A., and Elhammer, A.P. 1994. Glycosylation of recombinant prorenin in insect cells—the insect-cell line Sf9 does not express the mannose 6-phosphate recognition signal. Biochemistry 33: 8793–8797.

    Article  CAS  PubMed  Google Scholar 

  34. Drickamer, K. 1991. Clearing up glycoprotein hormones. Cell 67: 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  35. Lodish, H.F. 1991. Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem. Sci. 16: 374–377.

    Article  CAS  PubMed  Google Scholar 

  36. Dobrovolsky, V.N., Lagutin, O.V., Vinogradova, T.V., Frolova, I.S., Kuznetsov, V.P., and Larionov, O.A. 1993. Human gamma interferon expression in the mammary gland of transgenic animals. FEBS Lett. 319: 181–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, D., Freedman, R., Hoare, M. et al. N-Glycosylation of Recombinant Human Interferon-γ Produced in Different Animal Expression Systems. Nat Biotechnol 13, 592–596 (1995). https://doi.org/10.1038/nbt0695-592

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0695-592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing