Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil

Abstract

Here we describe targeting of the mouse metallothionein I (MT) protein to the cell surface of the heavy metal-tolerant Ralstonia eutropha (formerly Alcaligenes eutrophus) CH34 strain, which is adapted to thrive in soils highly polluted with metal ions. DNA sequences encoding MT were fused to the autotransporter β-domain of the IgA protease of Neisseria gonorrhoeae, which targeted the hybrid protein toward the bacterial outer membrane. The translocation, surface display, and functionality of the chimeric MTβ protein was initially demonstrated in Escherichia coli before the transfer of its encoding gene (mtb) to R. eutropha. The resulting bacterial strain, named R. eutropha MTB, was found to have an enhanced ability for immobilizing Cd2+ ions from the external media. Furthermore, the inoculation of Cd2+-polluted soil with R. eutropha MTB decreased significantly the toxic effects of the heavy metal on the growth of tobacco plants (Nicotiana bentamiana). 

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic structure of pMTβ-1 and production of MTβ in E. coli.
Figure 2: Accumulation of Cd2+ by E. coli and R. eutropha.
Figure 3: Structure of the transposon TnMTβ-1 and production of MTβ in R. eutropha.
Figure 4: Remediation of Cd2+ toxicity on plant growth by R. eutropha MTB.

Similar content being viewed by others

References

  1. de Lorenzo, V. & Kuenen, G. Scientific basis for the remediation of the toxic spill of Aznalcóllar mine: combining bacteria and plants to address an intractable kind of pollution. Environ. Microbiol. 1, 275–278 (1999).

    Article  CAS  Google Scholar 

  2. Grimalt, J.O., Ferrer, M. & Macpherson, E. The mine tailing accident in Aznalcollar. Sci. Total Environ. 242, 3–11 (1999).

    Article  CAS  Google Scholar 

  3. Lovley, D.R. & Coates, J.D. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8, 285–289 (1997).

    Article  CAS  Google Scholar 

  4. Gadd, G.M. & White, C. Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol. 11, 353–359 (1993).

    Article  CAS  Google Scholar 

  5. Chaney, R.L. et al. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8, 279–284 (1997).

    Article  CAS  Google Scholar 

  6. Kratochvil, D. & Volesky, B. Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300 (1998).

    Article  CAS  Google Scholar 

  7. Nordberg, M. Metallothioneins: historical review and state of knowledge. Talanta 46, 243–254 (1998).

    Article  CAS  Google Scholar 

  8. Sousa, C., Kotrba, P., Ruml, T., Cebolla, A. & Lorenzo, V.d. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J. Bacteriol. 180, 2280–2284 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Valls, M., González-Duarte, R., Atrian, S. & Lorenzo, V.D. Bioaccumulation of heavy metals with proteins fusions of metallothionein to bacterial OMPs. Biochimie 80, 855–861 (1998).

    Article  CAS  Google Scholar 

  10. Mergeay, M. et al. Alcaligenes eutrophus CH34 is a facultative chemolitotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162, 328–334 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson, I.R., Navarro-Garcia, F. & Nataro, J.P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378 (1998).

    Article  CAS  Google Scholar 

  12. Pohlner, J., Halter, R., Beyreuther, K. & Meyer, T.F. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462 (1987).

    Article  CAS  Google Scholar 

  13. Klauser, T., Krämer, J., Otzelberger, K., Pohlner, J. & Meyer, T.F. Characterization of the Neisseria Igaβ-core. The essential unit for outer membrane targeting and extracellular protein secretion. J. Mol. Biol. 234, 579–593 (1993).

    Article  CAS  Google Scholar 

  14. Veiga, E., De Lorenzo, V. & Fernandez, L.A. Probing secretion and translocation of a beta-autotransporter using a reporter single-chain Fv as a cognate passenger domain. Mol. Microbiol. 33, 1232–1243 (1999).

    Article  CAS  Google Scholar 

  15. de Lorenzo, V. & Timmis, K.N. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 235, 386–405 (1994).

    Article  CAS  Google Scholar 

  16. Bardwell, J.C.A. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199–205 (1994).

    Article  CAS  Google Scholar 

  17. Jose, J., Krämer, J., Klauser, T., Pohlner, J. & Meyer, T.F. Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Igaβ autotransporter pathway. Gene 178, 107–110 (1996).

    Article  CAS  Google Scholar 

  18. Bardwell, J.C.A., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  Google Scholar 

  19. Tibazarwa, C., Wuertz, S., Mergeay, M., Wyns, L. & van Der Lelie, D. Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J. Bacteriol. 182, 1399–1409 (2000).

    Article  CAS  Google Scholar 

  20. Ramos, J.L. & Marqués, S. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ann. Rev. Microbiol. 51, 341–373 (1997).

    Article  CAS  Google Scholar 

  21. Diels, L., Dong, Q., van der Lelie, D., Baeyens, W. & Mergeay, M. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanims to the removal of heavy metals. J. Indust. Microbiol. 14, 142–153 (1995).

    Article  CAS  Google Scholar 

  22. Diels, L., De Smet, M., Hooyberghs, L. & Corbisier, P. Heavy metals bioremediation of soil. Mol. Biotechnol. 12, 149–158 (1999).

    Article  CAS  Google Scholar 

  23. Ouzounidou, G., Moustakas, M. & Eleftheriou, E.P. Physiological and ultrastructural effects of cadmium on Wheat (Triticum aestivum L.) leaves. Arch. Environ. Contam. Toxicol. 32, 154–160 (1997).

    Article  CAS  Google Scholar 

  24. Van Roy, S., Peys, K., Dresselaers, T. & Diels, L. The use of Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metal recovery. Res. Microbiol. 148, 526–528 (1997).

    Article  CAS  Google Scholar 

  25. Nies, D.H. & Silver, S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171, 896–900 (1989).

    Article  CAS  Google Scholar 

  26. Mergeay, M. Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol. 9, 17–24 (1991).

    Article  CAS  Google Scholar 

  27. Sousa, C., Cebolla, A. & de Lorenzo, V. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14, 1017–1020 (1996).

    Article  CAS  Google Scholar 

  28. Gilis, A. et al. Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J. Ind. Microbiol. Biotechnol. 20, 61–68 (1998).

    Article  CAS  Google Scholar 

  29. Miller, J.H. A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1992).

  30. Ausubel, F.M. et al. Current protocols in molecular biology. (John Wiley & Sons, New York, NY; 1994).

    Google Scholar 

  31. de Lorenzo, V., Fernandez, S., Herrero, M., Jakubzik, U. & Timmis, K.N. Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene 130, 41–46 (1993).

    Article  CAS  Google Scholar 

  32. Nikaido, H. Isolation of outer membranes. Methods Enzymol. 235, 225–234 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jon Beckwith and Max Mergeay for materials and strains used in this work, Sofía Fraile for her excellent technical work, and N. van der Lelie for inspiring discussions. We are grateful to Roser Gonzàlez-Duarte for her participation and continuous support to this work. M.V. held a predoctoral fellowship from the Generalitat de Catalunya (Spain). This work was supported in part by EU contracts BIO4-CT97-2123 and BIO4-CT97-2183 and by the Spanish CICYT grants BIO98-0808 and PB96-0225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valls, M., Atrian, S., de Lorenzo, V. et al. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18, 661–665 (2000). https://doi.org/10.1038/76516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing