Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells

Abstract

A soybean cDNA encoding the small subunit peptide of a cotyledon-specific 2S albumin (Gm2S-1) is thought to play a role in arresting mitosis during the DNA endoreduplication and cell expansion phase of seed development. The peptide (termed lunasin) contains the cell adhesion motif Arg-Gly-Asp (RGD) followed by eight aspartic acid residues at its C-terminal end. A chimeric gene encoding the lunasin peptide tagged with green fluorescent protein (GFP) arrested cell division, caused abnormal spindle fiber elongation, chromosomal fragmentation, and cell lysis when transiently transfected into murine embryo fibroblast, murine hepatoma, and human breast cancer cells. Deletion of the polyaspartyl end abolished the antimitotic effect. Subcellular localization of lunasin and immunobinding assay using synthetic peptides revealed the preferential adherence of lunasin to chromatin. Immunofluorescence showed that kinetochore proteins were displaced from the centromere in lunasin-transfected cells. These observations suggest that lunasin binds to the chromatin, leading to disruption of kinetochore formation and inhibition of mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induced expression of (A) lunasin and (B) lunasin-del in transformed DH5α E. coli.
Figure 2: Transient expression of lunasin-del and lunasin in mammalian cells: (A) Murine hepatoma cells (Hepa 1c1c7).
Figure 3
Figure 4: Indirect immunofluorescence (green) of microtubules in (A) lunasin-del and (B–D) lunasin-transfected murine hepatoma cells.
Figure 5: Solid-phase immunobinding assay for synthetic lunasin and lunasin-del peptides to (A) histones and (B) MAP2.
Figure 6: Double indirect immunofluorescence of kinetochore proteins and lunasin using CREST human antisera and lunasin polyclonal antisera, respectively.

Similar content being viewed by others

References

  1. Spencer, D. & Higgins, T.J.V. in Commentaries in Plant Science Vol. 2 (ed. Smith, H.) 175–189 (Pergamon Press, New York, 1981).

    Book  Google Scholar 

  2. Schweizer, L., Yerk-Davis, G.L., Phillips, R.L., Srienc, F. & Jones, R.J. Dynamics of maize endosperm development and DNA endoreduplication. Proc. Natl. Acad. Sci. USA 92, 7070–7074 (1995).

    Article  CAS  Google Scholar 

  3. Hauxwell, A.J., Corke, F.M.K., Hedley, C.L. & Wang, L. Storage protein gene expression is localized to regions lacking mitotic activity in developing pea embryos: an analysis of seed development in Pisum sativum XIV. Development 110, 283–289 (1990).

    CAS  PubMed  Google Scholar 

  4. da Silva Conceicao, A. & Krebbers, E. A cotyledon regulatory region is responsible for the different spatial expression patterns of Arabidopsis 2S albumin genes. Plant J. 5, 493–505 (1994).

    Article  Google Scholar 

  5. Galvez, A.F., Revilleza, M.J.R. & de Lumen, B.O. A novel methionine-rich protein from soybean cotyledon: cloning and characterization of a cDNA (Accession No. AF005030) Plant Gene Register #PGR97-103. Plant Physiol. 114, 1567 (1997).

    Article  Google Scholar 

  6. Odani, S., Koide, T. & Ono, T. Amino acid sequence of a soybean (Glycine max) seed polypeptide having a poly(L-aspartic acid) structure. J. Biol. Chem. 262, 10502 –10505 (1987).

    CAS  PubMed  Google Scholar 

  7. Goldberg, R., de Paiva, G. & Yadegari, R. Plant embryogenesis: zygote to seed. Science 266, 605–614 (1994).

    Article  CAS  Google Scholar 

  8. Kennedy, A.R. The evidence for soybean products as cancer preventive agents. J. Nutr. 125, 733S–743S (1995).

    CAS  PubMed  Google Scholar 

  9. Erickson, H.P. FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell. Biol. 7, 362–367 (1997).

    Article  CAS  Google Scholar 

  10. Margolin, W., Wang, R. & Kumar, M. Isolation of an FtsZ homolog from the Archaebacterium Halobacterium salinarum: implications for the evolution of FtsZ and tubulin. J. Bacteriol. 178, 1320–1327 (1996).

    Article  CAS  Google Scholar 

  11. Ben-Sasson, S.A., Sherman, Y. & Gavrieli, Y. Identification of dying cells—in situ staining. Methods Cell. Biol. 46, 29– 39 (1995).

    Article  CAS  Google Scholar 

  12. Wilson, L. & Jordan, M.A. in Microtubules (eds. Hyams, J. & Lloyd, C.) 59–84 (Wiley-Liss Inc., New York, 1994).

    Google Scholar 

  13. Zinkowski, R.P., Meyne, J. & Brinkley, B.R. The centromere-kinetochore complex: a repeat subunit model. J. Cell. Biol. 113, 1091– 1110 (1991).

    Article  CAS  Google Scholar 

  14. Rowinsky, E.K., Casenave, L.H. & Donehower, R.C. Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82, 1247– 1259 (1990).

    Article  CAS  Google Scholar 

  15. Earnshaw, W.C. Anionic regions in nuclear proteins. J. Cell. Biol. 105, 1479–1482 (1987).

    Article  CAS  Google Scholar 

  16. Goodwin, G.H., Walker, J.M. & Johns, E.W. in The Cell Nucleus Vol.VI. (ed. Busch, H.) 181–219 (Academic, New York, 1978).

    Google Scholar 

  17. Liu, L.F. & Miller, K.G. Eukaryotic DNA topoisomerases: two forms of type I DNA topoisomerases from HeLa cell nuclei. Proc. Natl. Acad. Sci. USA 78, 3487– 3491 (1981).

    Article  CAS  Google Scholar 

  18. Eisenman, R.N., Tachibana, C.Y., Abrams, H.D. & Hann, S.R. v-myc and c-myc-encoded proteins are associated with the nuclear matrix. Mol. Cell. Biol. 5, 114–126 (1985).

    Article  CAS  Google Scholar 

  19. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S.M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583– 592 (1995).

    Article  CAS  Google Scholar 

  20. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389 , 251–260 (1997).

    Article  CAS  Google Scholar 

  21. Earnshaw, W.C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell. Biol. 104, 817– 829 (1987).

    Article  CAS  Google Scholar 

  22. Earnshaw, W.C., Halligan, N., Cooke, C.A. & Rothfield, N.F. The kinetochore is part of the metaphase chromosome scaffold. J. Cell. Biol. 98, 352–357 (1984).

    Article  CAS  Google Scholar 

  23. Pluta, A.F., Cooke, C.A. & Earnshaw, W.C. Structure of the human centromere at metaphase. Trends Biochem. Sci. 15, 181–185 (1990).

    Article  CAS  Google Scholar 

  24. Lee, J.K., Huberman, J.A. & Hurwitz, J. Purification and characterization of a CENP-B homologue protein that binds to the centromeric K-type repeat DNA of Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 94, 8427–8432 (1997).

    Article  CAS  Google Scholar 

  25. Chen, R.C., Waters, J.C., Salmon, E.D. & Murray, A.W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242– 246 (1996).

    Article  CAS  Google Scholar 

  26. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).

    Article  CAS  Google Scholar 

  27. Ruoslahti, E. & Pierschbacher, M.D. Arg-gly-asp: a versatile cell recognition signal. Cell 44, 517– 519 (1986).

    Article  CAS  Google Scholar 

  28. Akiyama, S.K., Olden, K. & Yamada, K.M. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev. 14, 173– 189 (1995).

    Article  CAS  Google Scholar 

  29. Rowinsky, E.K., Casenave, L.H. & Donehower, R.C. Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82, 1247– 1259 (1990).

    Article  CAS  Google Scholar 

  30. Maniatis, T., Fritsch, E.F. & Sambrook, J. in Molecular Cloning 368– 369 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982).

    Google Scholar 

  31. Ulitzur, N., Humbert, M. & Pfeffer, S.R. Mapmodulin: a possible modulator of the interaction of microtubule-associated proteins with microtubules. Proc. Natl. Acad. Sci. USA 94, 5084–5089 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Bjeldanes, J. Riby, and G.H. Chang (Division of Nutritional Sciences and Toxicology, University of California at Berkeley [UCB]) for the cancer cell lines and the technical support in the transfection experiments; S. Ruzin and D. Schichnes (Center for Biological Imaging, UCB) for the microscopy and imaging assistance; P. Schow (Cancer Research Lab, UCB) for the technical help in flow cytometry and cell cycle analyses; H. Stotz (Department of Biological Sciences, Stanford University) for the technical advice on tubulin indirect immunofluorescence; B.R. Brinkley and R-H. Chen for generously providing the CREST and XMAD2 antibodies, respectively; W. Lei, R. Cho, V. Gurtu, Y. Lam, N. Duldulao, and C. Malacaman for their technical help; D.C. Krenz, I. Atkinson, and M.J. Revilleza for helpful discussions; and S. Nandi (Cancer Research Lab, UCB), Bob Buchanan (Department of Plant Biology, UCB), and L. Bjeldanes for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benito O. de Lumen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvez, A., de Lumen, B. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat Biotechnol 17, 495–500 (1999). https://doi.org/10.1038/8676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing