Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants

Abstract

Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction—the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizoflltration—the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization—the use of plants to eliminate the bioavailability of toxic metals hi soils. Biological mechanisms of toxic metal uptake, translocation and resistance as well as strategies for improving phytoremediation are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nriago, J.O. 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279: 409–411.

    Google Scholar 

  2. Settle, D.M. and Patterson, C.C. 1980. Lead in Albacore: Guide to lead pollution in Americans. Science 207: 1167–1176.

    CAS  Google Scholar 

  3. Kabata-Pendias, A. and Pendias, H. 1989. Trace Elements In The Soil And Plants. CRC Press, Florida.

    Google Scholar 

  4. Edgington, S.M. 1994. Environmental biotechnology. Bio/Technology 12: 1338–1342.

    CAS  PubMed  Google Scholar 

  5. Summers, A.O. 1992. The hard stuff: metals in bioremediation. Current Opinion in Biotechnology 3: 271–276.

    CAS  Google Scholar 

  6. Baker, A.J.M. and Brooks, R.R. 1989. Terrestrial higher plants which hyper-accumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126.

    CAS  Google Scholar 

  7. Raskin, I., Kumar, P.B.A.N., Dushenkov, S. and Salt, D.E. 1994. Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology 5: 285–290.

    CAS  Google Scholar 

  8. Ernst, W.H.O., Verkleij, J.A.C. and Schat, H. 1992. Metal tolerance in plants. Acta Bot. Neerl. 41: 229–248.

    CAS  Google Scholar 

  9. Brooks, R.R., Morrison, R.S., Reeves, R.D., Dudley, T.R. and Akman, Y. 1979. Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc. R. Soc. London. Ser. B. 203: 387–103.

    CAS  Google Scholar 

  10. Brooks, R.R., Morrison, R.S., Reeves, R.D. and Malaisse, F. 1978. Copper and cobalt in African species of Aeolanthus Mart. (Plectranthinae, Labiatae). Plant and Soil 50: 503–507.

    CAS  Google Scholar 

  11. Brooks, R.R., Trow, J.M., Veillon, J.M. and Jaffre, J.M. 1981. Studies on manganese accumulating Alyxia from New Caledonia. Taxon 30: 420–423.

    Google Scholar 

  12. Reeves, R.D. and Brooks, R.R. 1983. Hyperaccumulation of lead and zinc by two metallophytes from mining areas in Central Europe. Environ. Pollut. Ser. A. 31: 277–285.

    CAS  Google Scholar 

  13. Banuelos, G.S. and Meeks, D.W. 1990. Accumulation of selenium in plants grown on selenium-treated soil. J. Environ. Qual. 19: 772–777.

    CAS  Google Scholar 

  14. Timofeev-Resovsky, E.A., Agafonov, B.M. and Timofeev-Resovsky, N.V. 1962. Fate of radioisotopes in aquatic environments (In Russian). Proceedings of the Biological Institute of the USSR Academy of Sciences 22: 49–67.

    Google Scholar 

  15. Dierberg, F.E., DeBusk, T.A. and Goulet, N.A. Jr. 1987. Removal of copper and lead using a thin-film technique, p. 497–504. In: Aquatic Plants for Water Treatment and Resource Recovery. Reddy, K. B. and Smith, W. H. (Eds.). Magnolia Publishing Inc. FL.

    Google Scholar 

  16. Jain, S.K., Vasudevan, P. and Jha, N.K. 1989. Removal of some heavy metals from polluted waters by aquatic plants: Studies on duckweed and water velvet. Biological Wastes 28: 115–126.

    CAS  Google Scholar 

  17. Mo, S.C., Choi, D.S. and Robinson, J.W. 1989. Uptake of mercury from aqueous solutions by duckweed: The effect of pH, copper and humic acid. J. Env. Sci. Health A24: 135–146.

    CAS  Google Scholar 

  18. Jackson, P.J., Torres, A.P., Delhaize, E., Pack, E. and Bolender, S.L. 1990. The removal of barium ions from solution using Datura innoxia suspension culture cells. J. Env. Quality 19: 644–648.

    CAS  Google Scholar 

  19. Wildeman, T. and Cevaal, J.N. 1994. Constructed wetlands use natural processes to treat acid mine drainage. The Hazardous Waste Consultant July/August:1.24–1.28.

  20. Baker, A., Brooks, R. and Reeves, R.D. 1988. Growing for gold … and copper … and zinc. New Scientist 10: 44–48.

    Google Scholar 

  21. Chaney, R.L. 1983. Plant uptake of inorganic waste, p. 50–76. In: Land Treatment of Hazardous Wastes. Parr, J. E., Marsh, P. B. and Kla, J. M. (Eds.). Noyes Data Corp., Park Ridge.

    Google Scholar 

  22. Cunningham, S.D. and Berti, W.R. 1993. Remediation of contaminated soils with green plants: An overview. In Vitro. Cell. Dev. Biol. 29P: 207–212.

    Google Scholar 

  23. Wenzel, W.W., Sattler, H. and Jockwer, F. 1993. Metal hyperaccumulator plants: a survey on species to be potentially used for soil remediation. Agronomy Abstracts p. 52.

    Google Scholar 

  24. Banuelos, G.S., Cardon, G., Mackey, B., Ben-Asher, J., Wu, L., Beuselinck, P., Akohoue, S. and Zambrzuski, S. 1993. Plant and environment interactions, boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J. Environ. Qual. 22: 786–792.

    CAS  Google Scholar 

  25. Kumar, P.B.A.N., Dushenkov, V., Motto, H. and Raskin, I. 1995. Phytoextration—the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232–1238.

    CAS  PubMed  Google Scholar 

  26. Dushenkov, V., Kumar, P.B.A.N., Motto, H. and Raskin, I. 1995. Rhizofiltration—the use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29: 1239–1245.

    CAS  PubMed  Google Scholar 

  27. Walton, B.T. and Anderson, T.A. 1992. Plant-microbe treatment systems for toxic waste. Current Opinion in Biotechnology 3: 267–270.

    CAS  Google Scholar 

  28. Anderson, T.A., Guthrie, E.A. and Walton, B.T. 1993. Bioremediation. Environ. Sci. Technol. 27: 2630–2636.

    CAS  Google Scholar 

  29. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D. and Reeves, R.D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resource, Conservation and Recycling 11: 41–49.

    Google Scholar 

  30. Brown, S.L., Chaney, R.L., Angle, J.S. and Baker, A.J.M. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium–contaminated soil. J. Environ. Qual. 23: 1151–1157.

    CAS  Google Scholar 

  31. Brown, S.L., Chaney, R.L., Angle, J.S. and Baker, A.J.M. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59: 125–133.

    CAS  Google Scholar 

  32. Cataldo, D.A. and Wildung, R.E. 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental and Health Perspectives 27: 149–159.

    CAS  Google Scholar 

  33. Macaskie, L.E. 1991. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Critical Reviews in Biotechnolgy 11: 41–112.

    CAS  Google Scholar 

  34. Smith, R.A.H. and Bradshaw, A.D. 1979. The use of metal tolerant plant populations for the reclamation of metalliferous wastes. Journal of Applied Ecology 16: 595–612.

    CAS  Google Scholar 

  35. Losi, M.E., Amrhein, C. and Frankenberger, Jr. W.T. 1994. Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J. Environ. Qual. 23: 1141–1150.

    CAS  Google Scholar 

  36. Ramos, L., Hernandez, L.M. and Gonzalez, J.M. 1994. Sequential fractiona-tion of copper, cadmium, and zinc in soils from or near Doñana National Park. J. Environ. Qual. 23: 50–57.

    CAS  Google Scholar 

  37. Norvell, W.A. 1984. Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci. Sec. Am. J. 48: 1285–1292.

    CAS  Google Scholar 

  38. Harter, R.D. 1983. Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci. Soc. Am. J. 47: 47–51.

    CAS  Google Scholar 

  39. Marschner, H. 1986. Mineral Nutrition of Higher Plants. Academic Press, San Diego, CA.

    Google Scholar 

  40. Uren, N.C. 1981. Chemical reduction of an insoluble higher oxide of manganese by plant roots. J. Plant Nutr. 4: 65–71.

    CAS  Google Scholar 

  41. Blaylock, M.J. and James, B.R. 1994. Redox transformations and plant uptake of selenium resulting from root-soil interactions. Plant Soil 158: 1–12.

    CAS  Google Scholar 

  42. Bartlett, R. and James, B. 1979. Behavior of chromium in soils, III. Oxidation. J. Environ. Qual. 8: 31–35.

    CAS  Google Scholar 

  43. Singh, B.R. 1991. Selenium content of wheat as affected by selenate and selen-ite contained in Cl- or SO4-based NPK fertilizer. Fert. Res. 30: 1–7.

    CAS  Google Scholar 

  44. Anderson, T.A. and Coats, J.R. 1994. Bioremediation through Rhizosphere Technology. ACS Symposium Series, Washington, DC.

    Google Scholar 

  45. Crowley, D.E., Wang, Y.C., Reid, C.P.P. and Szaniszlo, P.J. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant and Soil 136: 179–198.

    Google Scholar 

  46. Barber, D.A. and Lee, R.B. 1974. The effect of micro-organisms on the absorption of manganese by plants. New Phytol. 73: 97–106.

    CAS  Google Scholar 

  47. Kinnersely, A.M. 1993. The role of phytochelates in plant growth and productivity. Plant Growth Regulation 12: 207–217.

    Google Scholar 

  48. Romheld, V. 1991. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant and Soil 130: 127–134.

    Google Scholar 

  49. Robinson, N.J., Tommey, A.M., Kuske, C. and Jackson, P.J. 1993. Plant metallothioneins. Biochem. J. 295: 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rauser, W.E. 1990. Phytochelatins. Ann. Rev. Biochem. 59: 61–86.

    CAS  PubMed  Google Scholar 

  51. Welch, R.M., Norvell, W.A., Schaefer, S.C., Shaff, J.E. and Kochian, L.V. 1993. Planta 190: 555–561.

    CAS  Google Scholar 

  52. Clarkson, D.T. and Luttge, U. 1989. III. Mineral nutrision: Divalent cations, transport and compartmentalization. Prog. Botany 51: 93–112.

    Google Scholar 

  53. Stephan, U.W. and Scholz, G. 1993. Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol. Plant. 88: 522–529.

    CAS  Google Scholar 

  54. Senden, M.H.M.N., Van Paassen, F.J.M., Van Der Meer, A.J.G.M. and Wolterbeek, H. Th. Cadmium-citric acid-xylem cell wall interactions in tomato plants. Plant Cell Env. 15: 71–79.

  55. Przemeck, E. and Haase, N.U. 1991. On the bonding of manganese, copper and cadmium to peptides of the xylem sap of plant roots. Water Air Soil Pollution 57–58: 569–577.

    Google Scholar 

  56. Tomsett, A.B. and Thurman, D.A. 1988. Molecular biology of metal tolerances of plants. Plant Cell Env. 11: 383–394.

    CAS  Google Scholar 

  57. Jackson, P.J., Unkefer, P.J., Delhaize, E. and Robinson, N.J. 1990. Mechanisms of trace metal tolerance in plants, p. 231–255. In: Environmental Injury to Plants. Katterman, F. (Ed.). Academic Press, San Diego, CA.

    Google Scholar 

  58. Ernst, W.H.O., Schat, H. and Verkleij, J.A.C. 1990. Evolutionary biology of metal resistance in Silene vulgaris. Evolutionary Trends in Plants 4: 45–51.

    Google Scholar 

  59. Cumming, J.R. and Taylor, G.J. 1990. Mechanisms of metal tolerance in plants: Physiological adaptations for exclusion of metal ions from the cytoplasm, p. 329–359. In: Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Alscher, R. G., and Cumming, J. R. (Eds.). Wiley-Liss, Inc.

    Google Scholar 

  60. Thurman, D.A. 1981. Mechanisms of metal tolerance in higher plants, p. 239–249. In: Effects of Heavy Metal Pollution on Plants. Lepp, N. W. (Ed.). Applied Science Publishers, London, England.

    Google Scholar 

  61. Mathys, W. 1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant. 40: 130–136.

    CAS  Google Scholar 

  62. Brookes, A., Collins, J.C. and Thurman, D.A. l981. The mechanism of zinc tolerance in grasses. Journal of Plant Nutrition 3: 695–705.

    Google Scholar 

  63. Krotz, R.M., Evangelou, B.P. and Wagner, G.J. 1989. Relationship between cadmium, zinc, Cd-peptide, and organic acid in (obacco suspension cells. Plant Physiol. 91: 780–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brune, A., Urbach, W. and Dietz, K.-J. 1994. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Env. 17: 153–162.

    CAS  Google Scholar 

  65. Vazquez, M.D., Barcelo, J., Poschenrieder, Ch, Madico, J., Hatton, P., Baker, A.J.M. and Cope, G.H. 1992. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol. 140: 350–355.

    CAS  Google Scholar 

  66. Vazquez, M.D., Poschenrieder, Ch, Barcelo, J., Baker, A.J.M., Hatton, P. and Cope, G.H. 1994. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. Bot. Acta. 107: 243–250.

    CAS  Google Scholar 

  67. Davies, K.L., Davies, M.S. and Francis, D. 1991. Zinc-induced vacuolation in root meristematic cells of Festuca rubra L. Plant Cell Env. 14: 399–406.

    CAS  Google Scholar 

  68. Van Steveninck, R.F.M., Van Steveninck, M.E., Fernando, D.R., Horst, W.J. and Marschner, H. 1987. Deposition of zinc phytate in globular bodies in roots of Deschampsia caespitosa ecotypes; a detoxification mechanism? J. Plant Physiol. 131: 247–257.

    CAS  Google Scholar 

  69. Van Steveninck, R.F.M., Van Steveninck, M.E., Wells, A.J. and Fernando, D.R. 1990. Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor. X-Ray microanalytical evidence. J. Plant Physiol. 137: 140–146.

    Google Scholar 

  70. Van Steveninck, R.F.M., Van Steveninck, M.E. and Fernando, D.R. 1992. Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor). Plant and Soil 146: 271–280.

    CAS  Google Scholar 

  71. Vogeli-Lange, R. and Wagner, G.J. 1990. Subcellular localization of cadmium-binding peptides in tobacco leaves. Implications of a transport function for cadmium-binding peptides. Plant Physiol. 92: 1086–1093.

    Google Scholar 

  72. Heuillet, E., Moreau, A., Halpern, S., Jeanne, N. and Puiseux-Dao, S. 1986. Cadmium binding to a thiol-molecule in vacuoles of Dunaliella bioculata contaminated with CdCl2: electron probe microanalysis. Biology of the Cell 58: 79–86.

    CAS  Google Scholar 

  73. Steffens, J.C. 1990. The heavy metal-binding peptides of plants. Annu Rev. Plant Physiol. Mol. Biol. 41: 553–575.

    CAS  Google Scholar 

  74. Salt, D.E. and Wagner, G.J. 1993. Cadmium transport across tonoplast of vesicles from oat roots. Evidence For a Cd+2/H+ antiport activity. J. Biol. Chem. 268: 12297–12302.

    Google Scholar 

  75. Salt, D.E. and Rauser, W.E. 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107: 1293–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Reese, R.N., White, C.A. and Winge, D.R. 1992. Cadmium-sulflde crystallites in Cd-(γEC)nG peptide complexes from tomato. Plant Physiol. 98: 225–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Speiser, D.M., Abrahamson, S.L., Banuelos, G. and Ow, D.W. 1992. Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol. 99: 817–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. de Knecht, J.A., van Dillen, M., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C. and Ernst, W.H.O. 1994. Phytochelatins in cadmium-tolerant Silene vulgaris. Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris. Chain Length Distribution and Sulfide Incorporation. Plant Physiol. 104: 255–261.

    Google Scholar 

  79. Salt, D.E., Thurman, D.A., Tomsett, A.B. and Sewell, A.K. 1989. Copper phytochelatins in Mimulus guttatus. Proc. R. Soc. Lond. Series B. 236: 79–89.

    CAS  Google Scholar 

  80. Tomsett, A.B., Salt, D.E., de Miranda, J. and Thurman, D.A. 1989. Metallothioneins and metal tolerance. Aspects of applied biology, roots and the soil environment. Aspects Appl. Biol. 22: 365–372.

    Google Scholar 

  81. Tomsett, A.B., Sewell, A.K., Jones, S.J., De Miranda, J.R. and Thurman, D.A. 1992. Metal-binding proteins and metal-regulated gene expression in higher plants, p. 1–24. In: Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins, Wray, J. L. (Ed.). Cambridge University Press, UK.

    Google Scholar 

  82. Lefebvre, D.D., Miki, B.L. and Laliberte, J.-F. 1987. Mammalian metallothionein functions in plants. Bio/Technololgy 5: 1053–1056.

    CAS  Google Scholar 

  83. Misra, S. and Gedamu, L. 1989. Heavy metal tolerant Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 78: 161–168.

    CAS  PubMed  Google Scholar 

  84. Maiti, I.B., Wagner, G.J. and Hunt, A.G. 1991. Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Science 76: 99–107.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Raskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salt, D., Blaylock, M., Kumar, N. et al. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Nat Biotechnol 13, 468–474 (1995). https://doi.org/10.1038/nbt0595-468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0595-468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing