Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Chemical Regulation of Bacillus Thuringiensis ∂-Endotoxin Expression in Transgenic Plants

Abstract

It has been suggested that widespread cultivation of transgenic crops that express high constitutive levels of the lepidopteran–specific Bacillus thuringiensis ∂–endotoxin will lead to selection for insects resistant to the toxin. As a possible method for managing the development of resistance, we have devised a system for temporally controlling the expression of the endotoxin. Tobacco plants harboring a toxin gene driven by a chemically–responsive promoter were treated with a chemical regulator. Chemical induction resulted in accumulation of toxin mRNA, and caused the plants to become insect tolerant. Such controllable gene expression in plants may find broad application in agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dulmage, H.T. 1981. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control, 193–222. In: Microbial Control of Pests and Plant Diseases, 1970–1980. H. D. Burges (Ed.). Academic Press, London.

    Google Scholar 

  2. Höfte, H. and Whiteley, H.R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.

    PubMed  PubMed Central  Google Scholar 

  3. Hofmann, C., Lüthy, P., Hütter, R. and Pliska, V. 1988. Binding of the delta endotoxin from Bacillus thuringiensis to brush border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173: 85–91.

    Article  CAS  PubMed  Google Scholar 

  4. Lüthy, P. and Ebersold, H.R. 1981. Bacillus thuringiensis delta-endotoxin: histopathology and molecular mode of action, 235–267. In: Pathogenesis of Invertebrate Microbial Diseases. E. W. Davidson (Ed.). Allenheld, Osmun and Co., Totowa, NJ.

    Google Scholar 

  5. Delannay, X., LaVallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. and Fischoff, D.A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7: 1265–1269.

    Google Scholar 

  6. Barton, K.A., Whiteley, H.R. and Yang, N.-S. 1987. Bacillus thuringiensis -endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M. and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  8. Fischoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.

    Google Scholar 

  9. Stone, T.B., Sims, S.R. and Marrone, P.G. 1989. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonos fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53: 228–234.

    Article  Google Scholar 

  10. McGaughey, W.H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195.

    Article  CAS  PubMed  Google Scholar 

  11. Van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D. and Van Melleart, H. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72–74.

    Article  CAS  PubMed  Google Scholar 

  12. Tabashnik, B.E., Cushing, N.L., Finson, N. and Johnson, M.W. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83: 1671–1676.

    Article  Google Scholar 

  13. Kirsch, K. and Schmutterer, H. 1988. Low efficacy of a Bacillus thuringiensis (Ber.) formulation in controlling the diamondback moth, Plutella xylostella (L.) in the Philippines. J. Appl. Entomol. 105: 249–255.

    Article  Google Scholar 

  14. Ferré, J., Real, M.D., Van Rie, J., Jansens, S. and Peferoen, M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119–5123.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leeper, J.R., Roush, R.T. and Reynolds, H.T. 1986. Preventing or managing resistance in arthropods, 335–346. In: Pesticide Resistance: Strategies and Tactics for Management. Natl. Res. Council (Ed.). National Academy Press, Washington, DC.

    Google Scholar 

  16. Gould, F. 1988. Evolutionary biology and genetically engineered crops. Bioscience 38: 26–33.

    Article  Google Scholar 

  17. Gould, F. 1988. Genetic engineering, integrated pest management and the evolution of pests. TIBTECH 6: S15–S18.

    Article  Google Scholar 

  18. Geiser, M., Schweitzer, S. and Grimm, C. 1986. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene 48: 109–118.

    Article  CAS  PubMed  Google Scholar 

  19. Ross, A.F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358.

    Article  CAS  PubMed  Google Scholar 

  20. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Métraux, J.-P. and Ryals, J.A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van de Rhee, M.D., Van Kan, J.A.L., González-Jaén, M.T. and Bol, J.F. 1990. Analysis of regulatory elements involved in the induction of two tobacco genes by salicylate treatment and virus infection. Plant Cell 2: 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohshima, M., Itoh, H., Matsuoka, M., Muramaki, T. and Ohashi, Y. 1990. Analysis of stress-induced ot salicylic acid-induced expression of the pathogenesis-related la protein gene in transgenic tobacco. Plant Cell 2: 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryals, J., Harms, C., Duesing, J., Sperisen, C., Meins, F. and Payne, G. 1990. Chemically regulatable DNA sequences and genes and uses thereof. European Patent Application EP 0 332 104 A2.

  24. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  25. Murray, E.E., Rocheleau, T., Eberle, M., Stock, C., Sekar, V. and Adang, M. 1991. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16: 1035–1050.

    Article  CAS  PubMed  Google Scholar 

  26. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischhoff, D.A. 1991. Modification of the coding sequence enchances expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F. and Boyer, H.W. 1977. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  28. Johnston, M. and Davis, R.W. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chandler, V.L., Maler, B.A. and Yamamoto, K.R. 1983. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33: 489–499.

    Article  CAS  PubMed  Google Scholar 

  30. Payne, G., Parks, T.D., Burkhart, W., Dincher, S., Ahl, P., Metraux, J.-P. and Ryals, J. 1988. Isolation of the genomic clone for pathogenesis-related protein 1a from Nicotiana tabacum cv. Xanthi-nc. Plant Mol. Biol. 11: 89–94.

    Article  CAS  PubMed  Google Scholar 

  31. Warren, G.W., Carozzi, N.B., Desai, N. and Koziel, M.G. 1992. Field evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J. Econ. Entomol. In press.

  32. Rothstein, S.J., Lahners, K.N., Lotstein, R.J., Carozzi, N.B., Jayne, S.M. and Rice, D.A. 1987. Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53: 153–161.

    Article  CAS  PubMed  Google Scholar 

  33. Watson, B., Currier, T.C., Gordon, M.P. and Nester, E. W. 1975. Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 123: 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hood, E.H., Helmer, G.L., Fraley, R.T. and Chilton, M.-D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168: 1291–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ward, E.R., Payne, G.P., Moyer, M.B., Williams, S.C., Dincher, S.S., Sharkey, K.C., Beck, J.J., Taylor, H.T., Ahl-Goy, P., Meins, F.J. and Ryals, J.A. 1991. Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol. 96: 390–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, S., Friedrich, L., Dincher, S. et al. Chemical Regulation of Bacillus Thuringiensis ∂-Endotoxin Expression in Transgenic Plants. Nat Biotechnol 10, 540–543 (1992). https://doi.org/10.1038/nbt0592-540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0592-540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing