Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Cloning of the Gamma–Subunit Methane Monooxygenase from Methylococcus Capsulatus

Abstract

Methane monooxygenase (MMO) catalyses the oxidation of a variety of organic compounds in addition to the oxidation of methane to methanol in methanotrophs. In order to complement biochemical and physiological studies on MMO from Methylococcus capsulatus, we have initiated molecular biological studies on this enzyme system. We obtained the amino acid sequence of the N–terminus of the γ–subunit of MMO, and used oligonucleotide mixed probes corresponding to this sequence to locate in a gene library a recombinant plasmid which contains the γ–subunit gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Colby, J., Stirling, D.I. and Dalton, H. 1977. The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, ether and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402.

    Article  CAS  Google Scholar 

  2. Stirling, D.I., Colby, J. and Dalton, H. 1979. A comparison of the substrate and electron donor specificities of the methane monooxygenases from three strains of methane-oxidising bacteria. Biochem. J. 177: 361–364.

    Article  CAS  Google Scholar 

  3. Higgins, I.J., Hammond, R.C., Sariaslani, F.S., Best, D., Davies, M.M., Tryhorn, S.E. and Taylor, F. 1979. Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB3b. Biochem. Biophys. Res. Commun. 89: 671–677.

    Article  CAS  Google Scholar 

  4. Gesser, H.D., Hunter, N.R. and Prakash, C.B. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85: 235–244.

    Article  CAS  Google Scholar 

  5. Crabtree, R.H. 1985. The organometallic chemistry of alkanes. Chem. Rev. 85: 245–269.

    Article  CAS  Google Scholar 

  6. Woodland, M.P. and Dalton, H. 1984. Purification and properties of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 259: 53–59.

    CAS  PubMed  Google Scholar 

  7. Colby, J. and Dalton, H. 1978. Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171: 461–468.

    Article  CAS  Google Scholar 

  8. Green, J. and Dalton, H. 1985. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 260: 15795–15801.

    CAS  PubMed  Google Scholar 

  9. Stanley, S.H., Prior, S.D., Leak, D.J. and Dalton, H. 1983. Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane oxidising organisms: Studies in batch and continuous cultures. Biotechnol. Letts. 5: 487–492.

    Article  CAS  Google Scholar 

  10. Green, J., Prior, S.D. and Dalton, H. 1985. Copper ions as inhibitors of protein C of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 153: 137–144.

    Article  CAS  Google Scholar 

  11. Allen, L.N. and Hanson, R.S. 1985. Construction of broad-host-range cosmid cloning vectors: Identification of genes necessary for growth of Methylobacterium organophilum on methanol. J. Bact. 161: 955–962.

    CAS  PubMed  Google Scholar 

  12. Nunn, D.N. and Lidstrom, M.E. 1986. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. J. Bact. 166: 581–590.

    Article  CAS  Google Scholar 

  13. Nunn, D.N. and Lidstrom, M.E. 1986. Phenotypic characterisation of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1. J. Bact. 166: 591–597.

    Article  CAS  Google Scholar 

  14. Warner, P.J., Higgins, I.J. and Drozd, J.W. 1980. Conjugative transfer of antibiotic resistance to methylotrophic bacteria. FEMS Microbiol. Lett. 7: 181–185.

    Article  CAS  Google Scholar 

  15. Lidstrom, M.E., Wopat, A.E., Dunn, D.N. and Toukdarian, A.E. 1984. Manipulation of methanotrophs, In: Genetic control of environmental pollutants. G.S. Omenn and A. Hollaender (eds): Plenum Press, NY.

    Google Scholar 

  16. Harwood, J.H., Williams, E. and Bainbridge, B.W. 1972. Mutation of the methane oxidising bacterium Methylococcus capsulatus. J. Appl. Bacteriol. 35: 99–108.

    Article  CAS  Google Scholar 

  17. Williams, E., Shimmin, A. and Bainbridge, B.W. 1977. Mutation in the obligate methylotrophs Methylococcus capsulatus and Methylomonas albus. FEMS Microbiol. Lett. 2: 293–296.

    Article  CAS  Google Scholar 

  18. Dalton, H., Mann, N.H. and McPheat, W. 1983. Problems associated with the genetic analysis of methanotrophs. Ann. Microbiol. 33: 3–7.

    CAS  Google Scholar 

  19. Woodland, M.P. and Dalton, H. 1984. Purification of component A of the soluble methane monooxygenase of Methylococcus capsulatus (Bath) by high-pressure gel permeation chromatography. Analytical Biochemistry 139: 459–462.

    Article  CAS  Google Scholar 

  20. Shine, J. and Dalgarno, L. 1975. Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34–38.

    Article  CAS  Google Scholar 

  21. Whittenbury, R., Dalton, H., Eccleston, M. and Reed, H.L. 1975. The different types of methane-oxidising bacteria and some of their more unusual properties. In: Microbial Growth on C1 Compounds, p 1–9. G. Terui (ed.). Society of Fermentation Technology, Tokyo.

    Google Scholar 

  22. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular cloning, A laboratory manual. Cold Spring Harbor Laboratory, NY.

    Google Scholar 

  23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  24. Laursen, R.A., 1971. Solid-phase Edman degradation. An automatic peptide sequencer. Eur. J. Biochem. 20: 89–102.

    Article  CAS  Google Scholar 

  25. Russell, D.R. and Bennett, G.N. 1982. Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the −35 to −10 spacing. Gene 20: 231–243.

    Article  CAS  Google Scholar 

  26. Messing, J. and Vieira, J. 1982. A new pair of m13 vectors for selecting either strand of a double-digest restriction fragment. Gene 19: 269–276.

    Article  CAS  Google Scholar 

  27. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullens, I., Dalton, H. Cloning of the Gamma–Subunit Methane Monooxygenase from Methylococcus Capsulatus. Nat Biotechnol 5, 490–493 (1987). https://doi.org/10.1038/nbt0587-490

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0587-490

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing