Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Construction and Characterization of a Versatile Broad Host Range DNA Cloning System for Gram–Negative Bacteria

Abstract

A set of broad host range cloning vectors has been constructed from the IncW plasmid pSa. These vectors have been constructed from the transfer defective deletion derivative pSa151, which encodes resistance to kanamycin and spectinomycin–streptomycin. Two of the vectors also contain the chloramphenicol resistance gene of Tn9, and a third contains the chloramphenicol resistance gene of pSa. One of the vectors contains the cos sequence of bacteriophage λ and can be used with in vitro packaging systems in the construction of large recombinant plasmids. Two of these vectors can be mobilized and transferred in the presence of a pBR322 derivative containing the transfer genes of pSa. Together these vectors contain cloning sites for SstII, HindIII, EcoRI, KpnI, PvuII, BamHI, SmaI, and Bg1II, and recombinants at certain of these sites can be detected by insertional inactivation of a drug resistance phenotype. The broad host range properties of the origin of replication of pSa allow the use of these vectors in a variety of gram–negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bolivar, F., Rodriguez, R.L., Betlach, M.C., and Boyer, H.W. 1977. Construction and characterization of new cloning vehicles I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2: 75–93.

    Article  CAS  Google Scholar 

  2. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles II. A multiple purpose cloning system. Gene 2: 95–113.

    Article  CAS  Google Scholar 

  3. An, G. and Friesen, I.D. 1979. Plasmid vehicles for direct cloning of Escherichia coli promoters. J. Bacteriol. 140: 400–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. West, R.W., Neve, R.L., and Rodriguez, R.L. 1979. Construction and characterization of E. coli promoter probe plasmid vectors, I. Cloning of promoter-containing DNA fragments. Gene 7: 271–288.

    Article  CAS  Google Scholar 

  5. Collins, J. 1979. Escherichia coli plasmids packageable in vitro in λ bacteriophage particles. In: Methods in Enzymology, R. Wu (ed.) 68: 309–326. Academic Press, New York.

    Google Scholar 

  6. Enquist, L. and Sternberg, N. 1979. In vitro packaging of λ Dam vectors and their use in cloning DNA fragments. In: Methods in Enzymology R. Wu (ed.) 68: 281–298. Academic Press, New York.

    Google Scholar 

  7. Hohn, B. 1979. In vitro packaging of λ and cosmid DNA. In: Methods in Enzymology. R. Wu (ed.) 68: 299–309. Academic Press, New York.

    Google Scholar 

  8. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. (USA) 77: 7347–7351.

    Article  CAS  Google Scholar 

  9. Friedman, A.M., Long, S.R., Brown, S.E., Buikema, W.J., and Ausubel, F.M. 1982. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18: 289–296.

    Article  CAS  Google Scholar 

  10. Klee, H.J., Gordon, M.P., and Nester, E.W. 1982. Complementation analysis of Agrobacterium tumefaciens Ti plasmid mutations affecting oncogenicity. J. Bacteriol. 150: 327–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Olsen, R.H., DeBusscher, G., and McCombie, W.R. 1982. Development of broad-host-range vectors and gene banks: Self-cloning of the Pseudomonas aeruginosa PAO chromosome. J. Bacteriol. 150: 60–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagahari, K. and Sakaguchi, K. 1978. RSF1010 plasmid as a potentially useful vector in Pseudomonas species. J. Bacteriol. 133: 1527–1529.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wood, D.O., Hollinger, M.F., and Tindol, M.B. 1981. Versatile cloning vector for Pseudomonas aeruginosa. J. Bacteriol. 145: 1448–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiss, G.B. and Kalman, Z. 1982. Transformation of Rhizobium meliloti 41 with plasmid DNA. J. Bacteriol. 150: 465–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Leemans, J., Langenakens, J., DeGreve, H., Deblaere, R., Van Montagu, M., and Schell, J. 1982. Broad-host-range cloning vectors derived from the W-plasmid pSa. Gene 19: 361–364.

    Article  CAS  Google Scholar 

  16. Gorai, A.P., Heffron, F., Falkow, S., Hedges, R.W., and Datta, N. 1979. Electron microscope heteroduplex studies of sequence relationships among plasmids of the W incompatibility group. Plasmid 2: 485–492.

    Article  CAS  Google Scholar 

  17. Tait, R.C., Lundquist, R.C., and Kado, C.I. 1982. Genetic map of the crown gall suppressive IncW plasmid pSa. Mol. Gen. Genet. 186: 10–15.

    Article  CAS  Google Scholar 

  18. Ward, J.M. and Grinsted, J. 1982. Physical and genetic analysis of the IncW group plasmids R388, Sa, and R7k. Plasmid 7: 239–250.

    Article  CAS  Google Scholar 

  19. Tait, R.C., Close, T.J., Rodriguez, R.L., and Kado, C.I. 1982. Isolation of the origin of replication of the IncW-group plasmid pSa. Gene 20: 39–49.

    Article  CAS  Google Scholar 

  20. van Larabeke, N., Engler, G., Holsters, M., Van den Elsackers, S., Zaenen, I., Schilperoort, R. A., and Schell, J. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall inducing ability. Nature (London) 252: 169–170.

    Article  Google Scholar 

  21. Kao, J.C., Perry, K.L., and Kado, C.I. 1982. Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 188: 425–432.

    Article  CAS  Google Scholar 

  22. Tait, R.C., Kado, C.I., and Rodriguez, R.L. 1983. A comparison of the origin of replication of pSa with R6K. Mol. Gen. Genet. in press.

  23. Soberon, X., Covarrubias, L., and Bolivar, F. 1980. Construction and characterization of new cloning vehicles, IV. Deletion derivatives of pBR322 and pBR325. Gene 9: 287–305.

    Article  CAS  Google Scholar 

  24. Boyer, H.W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41: 459–472.

    Article  CAS  Google Scholar 

  25. Klapwijk, P., van Beelen, P., and Schilperoort, R. 1979. Isolation of a recombination deficient Agrobacterium tumefaciens mutant. Mol. Gen. Genet. 173: 171–175.

    Article  CAS  Google Scholar 

  26. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

  27. Kado, C.I. and Heskett, M.G. 1970. Selective media for isolation of Agrobacterium, Corneybacterium, Erwinia, Pseudomo-nas, and Xanthomonas. Phytopathology 60: 969–976.

    Article  CAS  Google Scholar 

  28. Allen, O.N. 1957. Experiments in Soil Bacteriology 3rd Rev. ed. (Burgess Publ. Co.) Minneapolis, Minn, p 54.

    Google Scholar 

  29. Greene, P.J., Heyneker, H.L., Bolivar, F., Rodriguez, R.L., Betlach, M.C., Covarrubias, A.A., Backman, K., Russel, D.J., Tait, R., and Boyer, H.W. 1978. A general method for the purification of restriction enzymes. Nucleic Acids Research 5: 2373–2380.

    Article  CAS  Google Scholar 

  30. Tait, R.C., Rodriguez, R.L., and West, R.W. Jr. . 1980. The rapid purification of T4 DNA ligase from a λ T4 tig lysogen. J. Biol. Chem. 255: 813–815.

    CAS  PubMed  Google Scholar 

  31. Casse, F., Boucher, C., Julliet, J.S., Michel, M. and Denarie, J. 1979. Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J. Gen. Microbiol. 113: 229–242.

    Article  CAS  Google Scholar 

  32. Langridge, J., Langridge, P., and Berquist, P.L. 1980. Extraction of nucleic acids from agarose gels. Anal. Biochem. 103: 264–271.

    Article  CAS  Google Scholar 

  33. Close, T.J. and Rodriguez, R.L. 1982. Construction and characterization of the chioramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene 20: 305–316.

    Article  CAS  Google Scholar 

  34. Kool, A.J., van Zeben, M.S., and Nijkamp, H.J.J. 1974. Identification of messenger ribonucleic acids and proteins synthesized by the bacteriocinogenic CloDFIS in purified minicells of Escherichia coli. J. Bacteriol. 118: 213–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ny, T. and Bjork, G.R. 1980. Cloning and restriction mapping of the trmA gene coding for transfer ribonucleic acid (5-methyluridine)-methyltransferase in Escherichia coli K-12. J. Bacteriol. 142: 371–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dougan, G., Saul, M., Twigg, A., Gill, R., and Sherratt, D. 1979. Polypeptides expressed in Escherichia coli K–12 minicells by transposition elements Tn1 and Tn3. J. Bacteriol. 138: 48–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature (London) 227: 680–685.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tait, R., Close, T., Lundquist, R. et al. Construction and Characterization of a Versatile Broad Host Range DNA Cloning System for Gram–Negative Bacteria. Nat Biotechnol 1, 269–275 (1983). https://doi.org/10.1038/nbt0583-269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0583-269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing