Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming fibroblasts to express T-cell functions using cell extracts

Abstract

We demonstrate here the functional reprogramming of a somatic cell using a nuclear and cytoplasmic extract derived from another somatic cell type. Reprogramming of 293T fibroblasts in an extract from primary human T cells or from a transformed T-cell line is evidenced by nuclear uptake and assembly of transcription factors, induction of activity of a chromatin remodeling complex, histone acetylation, and activation of lymphoid cell–specific genes. Reprogrammed cells express T cell–specific receptors and assemble the interleukin-2 receptor in response to T cell receptor–CD3 (TCR–CD3) complex stimulation. Reprogrammed primary skin fibroblasts also express T cell–specific antigens. After exposure to a neuronal precursor extract, 293T fibroblasts express a neurofilament protein and extend neurite-like outgrowths. In vitro reprogramming of differentiated somatic cells creates possibilities for producing isogenic replacement cells for therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Import and chromatin binding of transcriptional activators of the IL-2 gene in 293T nuclei exposed to STE.
Figure 2: Chromatin remodeling and activation of the IL2 gene in STE.
Figure 3: 293T fibroblasts reprogrammed in Jurkat-TAg extract express hematopoietic cell-specific genes.
Figure 4: Fibroblasts reprogrammed in Jurkat extract exhibit hematopoietic cell markers.
Figure 5: Induction of a T cell–specific signaling pathway in reprogrammed cells.
Figure 6: Fibroblasts reprogrammed in NT2 extract express neurofilament protein NF200.

Similar content being viewed by others

References

  1. Gurdon, J.B. & Uehlinger, V. “Fertile” intestine nuclei. Nature 210, 1240–1241 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Cibelli, J.B. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Cibelli, J.B. et al. Transgenic bovine chimeric offspring produced from somatic cell–derived stem-like cells. Nat. Biotechnol. 16, 642–646 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Munsie, M.J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Tada, M., Tada T., Lefebvre, L., Barton, S.C. & Surani, M.A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Surani, M.A. Reprogramming of genome function through epigenetic inheritance. Nature 414, 122–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Morrison, S.J. Stem cell potential: can anything make anything? Curr. Biol. 11, R7–R9 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hu, E., Tontonoz, P. & Spiegelman, B.M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl. Acad. Sci. USA 92, 9856–9860 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen, C.N., Slack, J.M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nat. Cell Biol. 2, 879–887 (2001).

    Article  Google Scholar 

  13. Funderburgh, J.L., Funderburgh, M.L., Mann, M.M., Corpuz, L.M. & Roth, M.R. Proteoglycan expression during transforming growth factor β–induced keratocyte–myofibroblast transdifferentiation. J. Biol. Chem. 276, 44173–44178 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Condorelli, G. et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc. Natl. Acad. Sci. USA 98, 10733–10738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wangh, L.J., DeGrace, D., Sanchez, J.A., Golf, A. & Yeghiazarians, Y. Efficient reactivation of Xenopus erythrocyte nuclei in Xenopus egg extracts. J. Cell Sci. 108, 2187–2196 (1995).

    CAS  PubMed  Google Scholar 

  16. Kass, S., Pruss, D. & Wolffe, A. How does DNA methylation repress transcription? Trends Genet. 13, 444–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kikyo, N., Wade, P.A., Guschin, D., Ge, H. & Wolffe, A.P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2362 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Crabtree, G.R. Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Ward, S.B. et al. Chromatin remodeling of the interleukin-2 gene: distinct alterations in the proximal versus distal enhancer regions. Nucleic Acids Res. 26, 2923–2934 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, J. & Weiss, A. T cell receptor signalling. J. Cell Sci. 114, 243–244 (2001).

    CAS  PubMed  Google Scholar 

  21. Skålhegg, B.S. et al. Location of cAMP-dependent protein kinase type I with the TCR–CD3 complex. Science 263, 84–87 (1994).

    Article  PubMed  Google Scholar 

  22. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. O'Neill, L.P. & Turner, B.M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaempfer, R. Regulation of the human interleukin-2/interleukin-2 receptor system: a role for immunosuppression. Proc. Soc. Exp. Biol. Med. 206, 176–180 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki, T. & Taniguchi, T. Coupling of the IL2 receptor complex with non-receptor protein tyrosine kinases. Cancer Surv. 27, 25–40 (1996).

    CAS  PubMed  Google Scholar 

  26. Debus, E., Weber, K. & Osborn, M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 25, 193–203 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Collas, P., Le Guellec, K. & Tasken, K. The A-kinase anchoring protein, AKAP95, is a multivalent protein with a key role in chromatin condensation at mitosis. J. Cell Biol. 147, 1167–1180 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of chromatin. Methods Enzymol. 274, 189–197 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Steen, R.L., Cubizolles, F., Le Guellec, K. & Collas, P. A-kinaseanchoring protein (AKAP)95 recruits human chromosome-associated protein (hCAP)-D2/Eg7 for chromosome condensation in mitotic extract. J. Cell Biol. 149, 531–536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Collas, P., Liang, M.-R., Vincent, M. & Aleström, P. Active transgenes in zebrafish are enriched in acetylated histone H4 and dynamically associate with RNA Pol II and splicing complexes. J. Cell Sci. 112, 1045–1054 (1999).

    CAS  PubMed  Google Scholar 

  31. Collas, P. Modulation of plasmid DNA methylation and expression in zebrafish embryos. Nucl. Acids Res. 26, 4454–4461 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Küntziger, A. Spurkland, and Y. Qi for discussion, primers, probes, and technical assistance. This work was supported by the Research Council of Norway and Nucleotech, LLC. P.C. is a fellow of the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Collas.

Ethics declarations

Competing interests

Part of this project was funded by Nucleotech, LLC, and A.-M.H. was employed by Nucleotech, LLC, during the completion of this work. The nuclear and cell reprogramming methods described here are the property of Nucleotech, LLC (PCT application no. PCT/US 01/47882).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håkelien, AM., Landsverk, H., Robl, J. et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 20, 460–466 (2002). https://doi.org/10.1038/nbt0502-460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0502-460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing