Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents

Abstract

Through sequential generations of random mutagenesis and screening, we have directed the evolution of an esterase for deprotection of an antibiotic p-nitrobenzyl ester in aqueous-organic solvents. Because rapid screening directly on the desired antibiotic (loracarbef) nucleus p-nitrobenzyl ester was not feasible, the p-nitrophenyl ester was employed. Catalytic performance on the screening substrate was shown to reasonably mimic enzyme activity toward the desired ester. One p-nitrobenzyl esterase variant performs as well in 30% dimethylformamide as the wildtype enzyme in water, reflecting a 16-fold increase in esterase activity. Random pairwise gene recombination of two positive variants led to a further two-fold improvement in activity. Considering also the increased expression level achieved during these experiments, the net result of four sequential generations of random mutagenesis and the one recombination step is a 50–60-fold increase in total activity. Although the contributions of individual effective amino acid substitutions to enhanced activity are small (<2-fold increases), the accumulation of multiple mutations by directed evolution allows significant improvement of the biocatalyst for reactions on substrates and under conditions not already optimized in nature. The positions of the effective amino acid substitutions have been identified in a pNB esterase structural model developed based on its homology to acetylcholinesterase and triacylglycerol lipase. None appear to interact directly with the antibiotic substrate, further underscoring the difficulty of predicting their effects in a ‘rational’ design effort.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Chen, K. and Arnold, F. 1993. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90: 5618–5622.

    CAS  Article  Google Scholar 

  2. 2

    You, L. and Arnold, F.H. 1995. Directed evolution of Subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9: 77–83.

    Article  Google Scholar 

  3. 3

    Brannon, D.R., Mabe, J.A., and Fukuda, D.S. 1976. De-esterification of cephalosporin para-nitrobenzyl esters by microbial enzymes. J. Antibiotics 29: 121–124.

    CAS  Article  Google Scholar 

  4. 4

    U.S. Patent 3,725,359 [1975].

  5. 5

    Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck Jr., P., McGilvray, D., and Queener, S. 1994. The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase—cloning, sequence and high-level expression in Escherichia coli . Gene 151: 37–43.

    CAS  Article  Google Scholar 

  6. 6

    Cooper, R.D.G. 1992. The carbacephems: a new beta-lactam antibiotic class. Am. J. Med. 92 Supplement 6A: S2–S6.

    Article  Google Scholar 

  7. 7

    Arnold, F.H. 1996 Directed evolution: creating biocatalysts for the future. Chem. Eng. Science. In press.

  8. 8

    Stemmer, W.P.C. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747–10751.

    CAS  Article  Google Scholar 

  9. 9

    Stemmer, W.P.C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.

    CAS  Article  Google Scholar 

  10. 10

    Crameri, A., Whitehorn, E., Tate, E., and Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14: 315–319.

    CAS  Article  Google Scholar 

  11. 11

    Leung, D.W., Chen, E., and Goeddel, D.V. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.

    Google Scholar 

  12. 12

    Eckert, K.A. and Kunkel, T.A. 1991. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Applic. 1: 17–24.

    CAS  Article  Google Scholar 

  13. 13

    Cadwell, R.C. and Joyce, G.F. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Applic. 2: 28–33.

    CAS  Article  Google Scholar 

  14. 14

    Chen, K. and Arnold, F. 1991. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Bio/Technology 9: 1073–1077.

    CAS  Article  Google Scholar 

  15. 15

    Moore 1996. PhD thesis, Cal. Inst. of Tech., Pasadena, CA.

  16. 16

    Pohlenz, H.D., Boidol, W., Schuttke, I., and Streber, W.R. 1992. Purification and properties of an arthrobacter-oxydans p52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide-sequence of the corresponding gene. J. Bacteriol. 174: 6600–6607.

    CAS  Article  Google Scholar 

  17. 17

    Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Siliman, I. 1991. Atomic structure of acetylcholinesterase from Torpedo califor-nica: a prototypic acetylcholine-binding protein. Science 253: 872–879.

    CAS  Article  Google Scholar 

  18. 18

    Schrag, J.D. and Cygler, M. 1993. 1.8 angstroms refined structure of the lipase from Geotrichum candidum . J. Mol. Biol. 230: 575–591.

    CAS  Article  Google Scholar 

  19. 19

    Sali, A. and Blundell, T.L. 1993. Comparative modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.

    CAS  Article  Google Scholar 

  20. 20

    Sali, A. and Overington, J.P. 1994. Derivation of rules for comparative modeling from a database of protein structure alignments. Prot Sci. 3: 1582–1596.

    CAS  Article  Google Scholar 

  21. 21

    U.S.Patent Application No.07,739,2801.

  22. 22

    Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. pp. 1.82–1.84 in Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  23. 23

    Chen, Y., Usui, S., Queener, S.W., and Yu, C. 1995. Purification and properties of p-nitrobenzyl esterase from Bacillus subtilis . J. Ind. Micro. 15: 10–18.

    Article  Google Scholar 

  24. 24

    Jbilo, O., L'Hermite, Y., Talesa, V., Toutant, J.P., and Chatonnet, A. 1994. Acetylcholinesterase and butyrylcholinesterase expression in adult-rabbit tissues and during development. Eur. J. Biochem. 225: 115–124.

    CAS  Article  Google Scholar 

  25. 25

    Jbilo, O. and Chatonnet, A. 1990. Complete sequence of rabbit butyrylcholinesterase. Nucleic Acids Res. 18: 3990.

    CAS  Article  Google Scholar 

  26. 26

    Ozols, J. 1989. solation, properties, and the complete amino-acid sequence of a 2nd form of 60-kda glycoprotein esterase—orientation of the 60-kda proteins in the microsomal membrane. J. Biol. Chem. 264: 12533–12545.

    CAS  PubMed  Google Scholar 

  27. 27

    Bomblies, L., Biegelmann, E., Doering, V., Gerisch, G., Krafft-Czepa, H., Noegel, A.A., Schleicher, M., and Humbel, B.M. 1990. Membrane-enclosed crystals in Dictyostelium discoideum cells, consisting of developmentally regulated proteins with sequence similarities to known esterases. J. Cell Biol. 110: 669–679.

    CAS  Article  Google Scholar 

  28. 28

    Hwang, C.-S. and Kolattukudy, P.E. 1993. Molecular cloning and sequencing of thioesterase B cDNA and stimulation of expression of the thioesterase B gene associated with hormonal induction of peroxisomal proliferation. J. Biol. Chem. 268: 14278–14284.

    CAS  PubMed  Google Scholar 

  29. 29

    Lorti, M., Grandori, R., Fusetti, F., Longhi, S., Brocca, S., Tramontano, A., and Alberghina, L. 1993. Cloning and analysis of Candida cylindracealipase sequences. Gene 124: 45–55.

    Article  Google Scholar 

  30. 30

    Kaiser, R., Erman, M., Duax, W.L., Ghosh, D., and Joernvall, H. 1994. Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea . Primary structure, identity in peptide patterns, and additional microheterogeneity. FEBS Lett. 337: 123–127.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moore, J., Arnold, F. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14, 458–467 (1996). https://doi.org/10.1038/nbt0496-458

Download citation

Further reading