Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Production of Recombinant Proteins in Chinese Hamster Ovary Cells Using A Protein-Free Cell Culture Medium

Abstract

The growth-factor prototrophk Chinese hamster ovary (CHO) SSF3 cell line was previously adapted for growth in serum-free media. Here we present a newly designed medium which allows these cells to grow in the absence of any exogenously added growth factors. To investigate the capacity of CHO SSF3 cells for the efficient production of recombinant proteins in protein-free media, expression plasmids containing either a human single chain urokinase-type plasminogen activator (uPA)-encoding cDNA or a humanized immunoglobulin G (IgG) kappa light chain cDNA were introduced by transfection. The tryptophan synthase (trpB) gene of Escherichia coli was used as a dominantly acting selection marker allowing the cells to survive in a medium containing indole in place of tryptophan. Some of the clones obtained exhibited a stable uPA expression over a period of several months under selective conditions and the yields were up to 74 mg of uPA/l in a bioreactor and the productivity was around 40 mg/day per 109 cells. The yields of IgG light chains were up to 118 mg/l and the productivity was in the order of 56 mg/day per 109 cells in a bioreactor. These results demonstrate the potential of CHO SSF3 cells for the efficient production of recombinant proteins under protein-free conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cumming, D.A. 1991. Glycosylation of recombinant protein therapeutics: control and functional implications. Glycobiology 1: 115–130.

    Article  CAS  Google Scholar 

  2. Furukawa, K. and Kobata, A. 1992. Protein glycosylation. Curr. Opinion Biotechnol. 3: 554–559.

    Article  CAS  Google Scholar 

  3. Warren, C.E. 1993. Glycosylation. Curr. Opinion Biotechnol. 4: 596–602.

    Article  CAS  Google Scholar 

  4. Werner, R.G. and Noé, W. 1993. Mammalian cell cultures. Part I: Characterization, morphology and metabolism. Arzneim.-Forsch./Drug Res. 43: 1134–1139.

    CAS  Google Scholar 

  5. Minor, P.D. 1994. Ensuring safety and consistency in cell culture production processes: viral screening and inactivation. Trends in Biotechnology 12: 257–261.

    Article  CAS  Google Scholar 

  6. Kimberlin, R.H. 1991. An overview of bovine spongiform encephalopathy. Devel. Biol. Stand. 75: 75–82.

    CAS  Google Scholar 

  7. Cleveland, W.L., Wood, I. and Erlanger, B.F. 1983. Routine large-scale production of monoclonal antibodies in a protein-free culture medium. J. Immunol. Meth. 56: 221–234.

    Article  CAS  Google Scholar 

  8. Darfler, F.J. 1990. A protein-free medium for the growth of hybridomas and other cells of the immune system. In Vitro Cell. Dev. Biol. 26: 769–778.

    Article  CAS  Google Scholar 

  9. Sandstrom, C.E., Miller, W.M. and Papoutsakis, E.T. 1994. Review: Serum-free media for cultures of primitive and mature hematopoietic cells. Biotechnol. Bioeng. 43: 706–733.

    Article  CAS  Google Scholar 

  10. Gandor, C.R. 1993. Establishment and characterization of growth-factor-prototrophic Chinese hamster ovary (CHO) cell lines for the production of recombinant proteins. Doctoral thesis, Swiss Federal Institute of Technology.

  11. Butler, M. and Jenkins, H. 1989. Nutritional aspects of the growth of animal cells in culture. J. Biotechnol. 12: 97–110.

    Article  CAS  Google Scholar 

  12. Gottesman, M.M. 1987. Chinese hamster ovary cells. Meth. Enzymol. 151: 3–8.

    Article  CAS  Google Scholar 

  13. Kaufman, R.J 1990. Mammalian recombinant proteins: structure, function and immunological analysis. Curr. Opinion Biotechnol. 1: 141–150.

    Article  CAS  Google Scholar 

  14. Kellems, R.E. 1991. Gene amplification in mammalian cells: strategies for protein production. Curr. Opinion Biotechnol. 2: 723–729.

    Article  CAS  Google Scholar 

  15. Reff, M.E. 1993. High-level production of recombinant immunoglobulins in mammalian cells. Curr. Opinion Biotechnol. 4: 573–576.

    Article  CAS  Google Scholar 

  16. Kurano, N., Leist, C., Messi, F., Gandor, C., Kurano, S. and Fiechter, A. 1990. Growth kinetics of Chinese hamster ovary cells in a compact loop bioreactor: 3. Selection and characterization of an anchorage-independent subline and medium improvement. J. Biotechnol. 15: 245–258.

    Article  Google Scholar 

  17. Hartman, S.C. and Mulligan, R.C. 1988. Two dominant-acting selectable markers for gene transfer studies in mammalian cells. Proc. Natl. Acad. Sci. USA 85: 8047–8051.

    Article  CAS  Google Scholar 

  18. Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M. and Danielsen, M. 1987. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417.

    Article  CAS  Google Scholar 

  19. Messi, F. 1991. Tuning of structure and function of Chinese hamster ovary (CHO) cells by systematic design of defined micro-environments. Doctoral thesis, Swiss Federal Institute of Technology.

  20. Nagamine, Y., Sudol, M. and Reich, E. 1983. Hormonal regulation of plasminogen activator mRNA production in porcine kidney cells. Cell 32: 1181–1190.

    Article  CAS  Google Scholar 

  21. Wurm, F. 1990. Integration, amplification and stability of plasmid sequences in CHO cell cultures. Biologicals 18: 159–164.

    Article  CAS  Google Scholar 

  22. Avgerinos, G.C., Drapeau, D., Socolow, J.S., Mao, J., Hsiao, K. and Broeze, R.J. 1990. Spin filter perfusion system for high density cell culture: Production of recombinant urinary type plasminogen activator in CHO cells. Bio/Technology 8: 54–58.

    CAS  Google Scholar 

  23. Sarubbi, E., Nolli, M.L., Robbiati, F., Soffientini, A., Parenti, F. and Cassani, G. 1989. The differential glycosylation of human pro-urokinase from various recombinant mammalian cell lines does not affect activity and binding to PAI-1. Thromb. Haemos. 62: 927–933.

    Article  CAS  Google Scholar 

  24. Nolli, M.L., Sarubbi, E., Corti, A., Robbiati, F., Soffientini, A., Blasi, F., Parenti, F. and Cassani, G. 1989. Production and characterisation of human recombinant single chain urokinase-type plasminogen activator from mouse cells. Fibrinolysis 3: 101–106.

    Article  CAS  Google Scholar 

  25. Friedman, J.S., Cofer, C.L., Anderson, C.L., Kushner, J.A., Gray, P.P., Chapma, G.E., Stuart, M.C., Lazarus, L., Shine, J. and Kushner, P.J. 1989. High expression in mammalian cells without amplification. Bio/Technology 7: 359–362.

    CAS  Google Scholar 

  26. Leist, C.H., Meyer, H.-P. and Fiechter, A. 1986. Process control during the suspension culture of a human melanoma cell line in a mechanically stirred loop bioreactor. J. Biotechnol, 4: 235–246.

    Article  CAS  Google Scholar 

  27. Kurano, N., Leist, C., Messi, F., Kurano, S. and Fiechter, A. 1990. Growth kinetics of Chinese hamster ovary cells in a compact loop bioreactor: 1. Effects of physical and chemical environments. J. Biotechnol. 15: 101–112.

    Article  CAS  Google Scholar 

  28. Kurano, N., Leist, C., Messi, F., Kurano, S. and Fiechter, A. 1990. Growth kinetics of Chinese hamster ovary cells in a compact loop bioreactor: 2. Effects of medium components and waste products. J. Biotechnol. 15: 113–128.

    Article  CAS  Google Scholar 

  29. Asselbergs, F.A.M., Bürgi, R., Chaudhurei, B., Heim, J., Meyhack, B., Rajput, B., van Oostrum, J. and Alkan, S. 1993. Localization of epitopes recognized by monoclonal antibodies on tissue-type plasminogen activators using recombinant hybrid enzymes. Fibrinolysis 7: 1–14.

    Article  CAS  Google Scholar 

  30. Short, J.M., Fernandez, J.M., Sorge, J.A. and Huse, W.D. 1988. λZAP: A bacteriophage lambda expression vector with in vivo excision properties. Nucl. Acids Res. 16: 7583–7600.

    Article  CAS  Google Scholar 

  31. Chung, C.T. and Miller, R.H. 1988. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucl. Acids Res. 16: 3580.

    Article  CAS  Google Scholar 

  32. Nielson, K., Ehret, M. and Mathur, E. 1993. Concentration of dilute protein solutions with StrataClean™ resin. Strategies in Molecular Biology 6: 29.

    Google Scholar 

  33. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  34. Schägger, H., and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 268–279.

    Article  Google Scholar 

  35. Reiser, J. and Stark, G.R. 1983. Immunologic detection of specific proteins in cell extracts by fractionation in gels and transfer to paper. Meth. Enzymol. 96: 205–215.

    Article  CAS  Google Scholar 

  36. Hawkes, R., Niday, E. and Gordon, J. 1982. A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 119: 142–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zang, M., Trautmann, H., Gandor, C. et al. Production of Recombinant Proteins in Chinese Hamster Ovary Cells Using A Protein-Free Cell Culture Medium. Nat Biotechnol 13, 389–392 (1995). https://doi.org/10.1038/nbt0495-389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0495-389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing