Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Calmodulin as a Versatile Tag for Antibody Fragments

Abstract

Calmodulin is a highly acidic protein (net charge -24 at pH 8.0 in the absence of calcium) that binds to peptide and organic ligands with high affinity (Ka > 109 M-1) in a calcium-dependent manner. We have exploited these properties to develop calmodulin as a versatile tag for antibody fragments. Fusions of calmodulin with single chain Fv fragments (scFv) could be expressed by secretion from bacteria in good yield (5–15 mg/l in shaker flasks), and purified from periplasmic lysates or broth to homogeneity in a single step, either by binding to anion-exchange resin (DEAE-Sephadex), or to an organic ligand of calmodulin (N-(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide-agarose). The antibody fusions could be detected by binding of fluorescently labeled peptide ligands, as illustrated by their use in confocal microscopy, fluorescent activated cell sorting and “band shift” gel electrophoresis. Moreover, the interaction between calmodulin and peptide ligands could provide a means of heterodimerization of proteins, as illustrated by the assembly of an antibody-calmodulin fusion with maltose binding protein tagged with a peptide ligand of calmodulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Skerra, A. and Plückthün, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  PubMed  Google Scholar 

  2. Better, M., Chang, C.P., Robinson, R.R. and Horwitz, A.H. 1988. Escherichia coli secretion of active chimeric antibody fragment. Science 240: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Glockshuber, R., Malia, M., Pfitzinger, I. and Plückthün, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  4. Winter, G., Griffiths, A.D., Hawkins, R.E. and Hoogenboom, H.R. 1994. Making antibodies by pbage display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  PubMed  Google Scholar 

  5. Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341: 544–546.

    Article  CAS  PubMed  Google Scholar 

  6. Huse, W.D., Sastry, L., Iverson, S.A., Kang, A.S., Alting, M.M., Burton, D.R., Benkovic, S.J. and Lerner, R.A. 1989. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  7. Skerra, A., Pfitzinger, I. and Plückthün, A. 1991. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Bio/Technology 9: 273–278.

    CAS  Google Scholar 

  8. Schmidt, T.G.M. and Skerra, A. 1993. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Engineering 6: 109–122.

    Article  CAS  PubMed  Google Scholar 

  9. Neuberger, M., Williams, G.T. and Fax, R.O. 1984. Recombinant antibodies possessing novel effector functions. Nature 312: 604–608.

    Article  CAS  PubMed  Google Scholar 

  10. Wels, W., Harwerth, I.M., Zwickl, M., Hardman, N., Groner, B. and Hynes, N.E. 1992. Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB2 receptor. Bio/Technology 10: 1128–1132.

    CAS  Google Scholar 

  11. Brégerére, P., Schwartz, J. and Bedouelle, H. 1994. Bifunctional hybrids between the variable domains of an immunoglobulin and the maltose-binding protein of Escherichia coli: production, purification and antigen binding. Protein Engineering 7: 271–280.

    Google Scholar 

  12. Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B. and Bax, A. 1992. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256: 632–638.

    Article  CAS  PubMed  Google Scholar 

  13. Lukas, T., Haiech, J., Lau, W., Craig, T.A., Zimmer, W.E., Shattuck, R.L., Shoemaker, M.O. and Watterson, D.M. 1988. Calmodulin and calmodulin-regulated protein kinases as transducers of intracellular calcium signals. Cold Spring Harbor Symp. Quant. Biol. 53: 185–193.

    Article  CAS  Google Scholar 

  14. Stirling, D.A., Petrie, A., Pulpford, D.J., Paterson, D.T. and Stark, M.J. 1992. Protein-A calmodulin fusions: a novel approach for investigating calmodulin function in yeast. Mol. Microbiol. 6: 703–713.

    Article  CAS  PubMed  Google Scholar 

  15. Carr, D.W. and Scott, J.D. 1992. Blotting and band-shifting: techniques for studying protein-protein interactions. Trends Biocem. Sci. 17: 246–250.

    Article  CAS  Google Scholar 

  16. Ramanujam, P., Fogerty, S., Heiser, W. and Jolly, J. 1990. Fast gel electrophoresis to analyze DNA-protein interactions. BioTechniques 8: 556–563.

    CAS  PubMed  Google Scholar 

  17. Vorherr, T., Knöpfel, L., Hoffmann, F., Mollner, S., Pfuffer, T. and Carafoli, E. 1993. The calmodulin binding domain of nitric oxide synthase and adenyl cyclase. Biochemistry 32: 6081–6088.

    Article  CAS  PubMed  Google Scholar 

  18. Benitez-King, G., Huerto-Delgadillo, L. and Anton-Tay, F. 1993. Binding of 3H-melatonin to calmodulin. Life Sciences 53: 201–207.

    Article  CAS  PubMed  Google Scholar 

  19. Bayer, E.A. and Wilchek, M. 1990. Protein biotinylation. Methods Enzymol. 184: 138–160.

    Article  CAS  PubMed  Google Scholar 

  20. Padlan, E.A., Silverton, E.W., Sheriff, S., Cohen, G.H., Smith-Gill, S.J. and Davies, D.R. 1989. Structure of an antibody: antigen complex: crystal struc-ture of the HyHEL-10 Fab: lysozyme complex. Proc. Natl. Acad. Sci. USA 86: 5938–5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavoie, T.B., Drohan, W.N., Smith-Gill, S.J. 1992. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J. Immunol. 148: 503–513.

    CAS  PubMed  Google Scholar 

  22. Chester, K.A., Begent, R.H., Robson, L., Keep, P., Pedley, R.B., Boden, J.A., Boxer, G., Green, A., Winter, G., Cochet, O. and Hawkins, R.E. 1994. Phage libraries for generation of clinically useful antibodies. Lancet 343: 455–456.

    Article  CAS  PubMed  Google Scholar 

  23. Malencik, D.A. and Anderson, S.R. 1983. High-affinity binding of the mastoparans by calmodulin. Biochem. Biophys. Res. Comm. 114: 50–56.

    Article  CAS  PubMed  Google Scholar 

  24. Jönsson, U., Fägerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Löfås, S., Persson, B., Roos, H., Rönnberg, I., Sjölander, S., Stenberg, E., Ståhlberg, Urbaniczky, C., Öasflin, H. and Malmqvist, M. 1991. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11: 620–627.

    PubMed  Google Scholar 

  25. Clark, I.D., MacManus, J.P., Banville, D. and Szabo, A.G. 1993. A study of sensitized lanthanide fluorescence in an engineered calcium-binding protein. Anal. Biochem. 210: 1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Marin, O., Meggio, F., Marchiori, E., Borin, G. and Pinna, L.A. 1986. Site specificity of casein kinase-2 (TS) from rat liver cytosol. A study with model peptide substrates. Eur. J. Biochem. 160: 239–244.

    Article  CAS  PubMed  Google Scholar 

  27. Kuenzel, E.A., Mulligan, J.A., Sommercorn, J. and Krebs, E.G. 1987. Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. Proc. Natl. Acad. Sci. USA 262: 9136–9140.

    CAS  Google Scholar 

  28. Müller, M., Affolter, M., Leupin, W., Otting, G., Wüthrich, K. and Gehring, W.J. 1988. Isolation and sequence-specific DNA binding of the Antemopedia homeodomain. EMBO J. 7: 4299–4304.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carey, J. 1988, Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc. Natl. Acad. Sci. USA 85: 975–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. VanEldik, L.J. and Lukas, T.J. 1987. Site-directed antibodies to vertebrate and plant cabnodulins. Methods Enzymol. 139: 393–405.

    Article  CAS  Google Scholar 

  31. Yokota, T., Milenic, D.E., Whitlow, M. and Schlom, J. 1992. Rapid tumor penetration of a single-shain Fv and comparison with other immunoglobulin forms. Cancer Res. 51: 3402–3408.

    Google Scholar 

  32. Kalofonos, H.P., Rusckowski, M., Siebecker, D.A., Sivolapenko, G.B., Snook, D., Lavender, J.P., Epenetos, A.A. and Hnatowich, D.J. 1990. Imaging of tumour in patients with Indium-111-laheled biotin and streptavidin conjugated antibodies: preliminary communication. J. Nucl. Med. 31: 1791–1796.

    CAS  PubMed  Google Scholar 

  33. Paganelli, G., Magnani, P., Zito, R., Villa, E., Sudati, R., Lopalco, L., Rossetti, C., Malcovati, M., Chiolerio, F., Seccamani, E., Siccardi, A.G., and Fazio, F. 1991. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 51: 5960–5966.

    CAS  PubMed  Google Scholar 

  34. Chien, Y. and Dawid, I. 1984. Isolation and characterization of calmodulin genes from Xenopus laevis. Mol. Cell. Biol. 4: 507–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gibson, T.J. 1984. Studies on the Epstein-Barr virus genome. Ph.D. Thesis, University of Cambridge.

  36. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H.R., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gherardi, E. and Winter, G. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kraulis, P. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. I. Appl. Cryst. 24: 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, D., Lalla, C., Petrul, H. et al. Calmodulin as a Versatile Tag for Antibody Fragments. Nat Biotechnol 13, 373–377 (1995). https://doi.org/10.1038/nbt0495-373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0495-373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing