Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Immune Enhancers Composed of Polyvalent Binding Sites of Anti-CD3 Antibodies

Abstract

Anti-CD3 antibodies of some IgG subclasses are very potent T lymphocyte mitogens in vitro and, seemingly contradictorily, very effective immunosuppressive agents in vivo. Using hamster anti-murine CD3 monoclonal antibody, 2C11, as a model, we have found that 2C11.IgG, or its F(ab′)2 fragment, coupled to microbeads can provide short-term and vigorous activation of T cells and expansion of the lymphoid system in vivo. In contrast to free 2C11.IgG, these conjugates do not kill mice and cause T cell depletion, and can enhance immune responses. This study suggests that properly modified anti-CD3 antibodies can serve as in vivo immune system enhancers potentially useful in the treatment of cancer and chronic infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coley, W.B. 1909. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus of erysipelas and the bacillus prodigiosus). The Practitioner 83: 591–613.

    Google Scholar 

  2. Nauts, H.C., Swift, W.E. and Coley, B.L. 1946. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M. D., reviewed in the light of modern research. Cancer Res. 6: 205–216.

    CAS  PubMed  Google Scholar 

  3. Old, L.J. 1992. Tumor immunology: the first century. Current Biology 4: 603–607.

    CAS  Google Scholar 

  4. Bakker, W., Nijhuis-Heddes, J.M.A. and van der Velde, E.A. 1986. Postoperative intrapleural BCG in lung cancer: a 5-year follow-up report. Cancer Immunol. Immunother. 22: 155–159.

    Article  CAS  Google Scholar 

  5. Lamm, D.L. 1985. Bacillus Calmette-Guerin immunotherapy for bladder cancer. J. Urol. 134: 40–47.

    Article  CAS  Google Scholar 

  6. Kölmel, K.F., Vehmeyer, K., Göhring, E., Kuhn, B. and Wieding, J.U. 1991. Treatment of advanced malignant melanoma by a pyrogenic bacterial lysate. A pilot study. Onkologie 14: 411–417.

    Google Scholar 

  7. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Chang, A.E., Avis, F.P., Leitman, S., Linehan, W.M., Robertson, C.N., Lee, R.E., Rubin, J.T., Seipp, C.A., Simpson, C.G. and White, D.E. 1987. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N. Eng. J. Med. 316: 889–897.

    Article  CAS  Google Scholar 

  8. Lienard, D., Ewalenko, P., Delmotte, J.-J., Renard, N. and Lejeune, F.J. 1992. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10: 52–60.

    Article  CAS  Google Scholar 

  9. Krown, S.E. 1987. Interferon treatment on renal cell carcinoma: Current status and future prospects. Cancer 59: 647–651.

    Article  CAS  Google Scholar 

  10. Rosenberg, S.A. and Lotze, M.T. 1988. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Ann. Rev. Immunol. 4: 681–709.

    Article  Google Scholar 

  11. Rosenberg, S.A., Packard, B.S., Aebersold, P.M., Solomon, D., Topalian, S.L., Toy, S.T., Simon, P., Lotze, M.T., Yang, J.C., Seipp, C.A., Simpson, C., Carter, C., Bock, S., Schwartzentruber, D., Wei, J.P. and White, D.E. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Eng. J. Med. 319: 1676–1680.

    Article  CAS  Google Scholar 

  12. Osband, M.E., Lavin, P.T., Babayan, R.K., Graham, S., Lamm, D.L., Parker, B., Sawczuk, I., Ross, S. and Krane, R.J. 1990. Effect of autolymphocyte therapy on survival and quality of life in patients with metastatic renal-cell carcinoma. Lancet 335: 994–998.

    Article  CAS  Google Scholar 

  13. Van Wauwe, J.P., De Mey, J.R. and Goossens, J.G. 1980. OKT3: A monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J. Immunol. 124: 2708–2713.

    CAS  PubMed  Google Scholar 

  14. Chang, T.W., Kung, P.C., Gingras, S.P. and Goldstein, G. 1981. Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc. Natl. Acad. Sci. USA 78: 1805–1808.

    Article  CAS  Google Scholar 

  15. Leo, O., Foo, M., Sachs, D.H., Samelson, L.E. and Bluestone, J.A. 1987. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84: 1374–1378.

    Article  CAS  Google Scholar 

  16. Cosimi, A.B., Colvin, R.B., Burton, R.C., Rubin, R.H., Goldstein, G., Kung, P.C., Hansen, W.P., Delmonico, F.L. and Russell, P.S. 1981. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Eng. J. Med. 305: 308–314.

    Article  CAS  Google Scholar 

  17. Thistlewaite Jr., J.R., Stuart, J.K., Mayes, J.T., Gaber, A.O., Woodle, S., Buckingham, M.R. and Stuart, F.P. 1988. Monitoring and complications of monoclonal therapy: Complications and monitoring of OKT3 therapy. Am. J. Kidney Dis. 11: 112–119.

    Article  Google Scholar 

  18. Waldmann, H. 1989. Manipulation of T-cell responses with monoclonal antibodies. Ann. Rev. Immunol. 7: 407–444.

    Article  CAS  Google Scholar 

  19. Ortho Multicenter Transplant Study Group. 1985. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N. Eng. J. Med. 313: 337–342.

  20. Tax, W.J.M., Hermes, F.F.M., Willems, R.W., Capel, P.J.A. and Koene, R.A.P. 1984. Fc receptors for mouse IgG1 on human monocytes: Polymorphism and role in antibody-induced T cell proliferation. J. Immunol. 133: 1185–1189.

    CAS  PubMed  Google Scholar 

  21. Williams, J.M., Deloria, D., Hansen, J.A., Dinarello, C.A., Loertscher, R., Shapiro, H.M. and Strom, T.B. 1985. The events of primary T cell activation can be staged by use of Sepharose-bound anti-T3 (64.1) monoclonal antibody and purified interleukin-1. J. Immunol. 135: 2249–2255.

    CAS  PubMed  Google Scholar 

  22. Geppert, T.D. and Lipsky, P.E. 1987. Accessory cell independent proliferation of human T4 cells stimulated by immobilized monoclonal antibodies to CD3. J. Immunol. 138: 1660–1666.

    CAS  PubMed  Google Scholar 

  23. Ellenhorn, J.D.I., Hirsch, R., Schreiber, H. and Bluestone, J.A. 1988. In vivo administration of anti-CD3 prevents malignant progressor tumor growth. Science 242: 569–571.

    Article  CAS  Google Scholar 

  24. Ellenhorn, J.D.I., Schreiber, H. and Bluestone, J.A. 1990. Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice. J. Immunol. 144: 2840–2846.

    CAS  PubMed  Google Scholar 

  25. Kast, W.M., Bluestone, J.A., Heemskerk, M.H.M., Spaargaren, J., Voordouw, A.C., Ellenhorn, J.D.I. and Melief, C.J.M. 1990. Treatment with monoclonal anti-CD3 antibody protects against lethal Sendai virus infection by induction of natural killer cells. J. Immunol. 145: 2254–2259.

    CAS  PubMed  Google Scholar 

  26. Gambacorti-Passerini, C., Hank, J., Surfus, J., Tans, K., Moore, K., Borchert, A., Albertini, M. and Sondel, P.M. 1991. A phase I/b trial of anti-CD3 MAb plus IL2 in patients with cancer. Proc. Am. Asso. Cancer Res. 32: 248.

    Google Scholar 

  27. Yang, S., Branch, C., Grimm, E.A. and Roth, J.A. 1991. Low dose OKT3 prior to IL2 and TNF-α induces and enhances activation of cytotoxic lymphocytes in vivo. Proc. Am. Asso. Cancer Res. 32: 249.

    Google Scholar 

  28. Richards, J.M., Bluestone, J.A., Maimone, D., Ramming, K., Domanski, P.J., Vogelzang, N.J. and Gregory, S.A. 1991. Phase IB evaluation of OKT3. Proc. Am. Asso. Cancer Res. 32: 253.

    Google Scholar 

  29. Sosman, J., Ellis, T., Bodner, B., Kefer, C. and Fisher, R.I. 1992. Phase IB trial of anti-CD3 (OKT3) and low dose continuous infusion (CI) interleukin-2 (IL-2) in cancer patients. Proc. Am. Asso. Cancer Res. 33: 338.

    Google Scholar 

  30. Sun, L.K., Liou, R.S., Sun, N.C., Gossett, L.A., Sun, C., Davis, F.M., MacGlashan, Jr., D.W. and Chang, T.W. 1991. Transfectomas expressing both secreted and membrane-bound forms of chimeric IgE with anti-viral specificity. J. Immunol. 146: 199–205.

    CAS  PubMed  Google Scholar 

  31. Chang, T.W., Davis, F.M., Sun, N.C., Sun, C., MacGlashan, D.W. Jr. and Hamilton, R.G. 1990. Monoclonal antibodies specific for human IgE-producing B Cells: A potential therapeutic for IgE-mediated allergic diseases. Bio/Technology 8: 122–126.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedrychowski, A., Kim, YW. & Chang, T. Immune Enhancers Composed of Polyvalent Binding Sites of Anti-CD3 Antibodies. Nat Biotechnol 11, 486–489 (1993). https://doi.org/10.1038/nbt0493-486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0493-486

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing