Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Construction of Temperature–Regulated Yeast Promoters Using the Matα2 Repression System

Abstract

Temperature–regulated hybrid yeast promoters were constructed in which synthetic MATα2 operator sequences were inserted into the strong promoters for the constitutive TPI1 (triose phosphate isomerase) gene and the glucose–repressible ADH2 (alcohol dehydrogenase) gene. These variant promoters were joined to the E. coli lacZ gene in yeast vectors and transformed into mating–type a yeast strains bearing a temperature–sensitive sir3–8 mutation. At the permissive temperature (25°C), the sir3–8 product represses the silent mating–type loci HMRa and HMLα, so that the MATα2 represser protein is not synthesized by HMLα and β–galactosidase is produced at high levels. At the restrictive temperature (35°C), MATα2 repressor is made and represses transcription of lacZ. At temperatures between 25°C and 35°C, intermediate levels of β–galactosidase are made. Thus, the level of heterologous product can be altered by adjusting the temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, A.D. and Herskowitz, I. 1985. A represser (MATα2 product) and its operator control expression of a set of cell type specific genes in yeast. Cell 42:237–247.

    Article  CAS  PubMed  Google Scholar 

  2. Miller, A.M., MacKay, V.L., and Nasmyth, K. 1985. Identification and comparison of two sequence elements that confer cell-type transcription in yeast. Nature 314:598–603.

    Article  CAS  PubMed  Google Scholar 

  3. Kronstad, J.W., Holly, J.A., and MacKay, V.L. 1987. A yeast operator overlaps an upstream activation site. Cell 50:369–377.

    Article  CAS  PubMed  Google Scholar 

  4. Bender, A. and Sprague.Jr., G.F. 1987. MATα1 protein, a yeast transcription activator, binds synergestically with a second protein to a set of cell-type-specific genes. Cell 50:681–691.

    Article  CAS  PubMed  Google Scholar 

  5. Manney, T.R., Jackson, P., and Meade, J. 1983. Two temperature-sensitive mutants of Saccharomyces cerevisiae with altered expression of mating-type functions. J. Cell Biol. 96:1592–1600.

    Article  CAS  PubMed  Google Scholar 

  6. Hartig, A., Holly, J., Saari, G., and MacKay, V.L. 1986. Multiple regulation of STE2, a mating-type-specific gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:2106–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herskowitz, I. and Oshima, Y. 1981. Control of cell type in Saccharomyces cerevisiae: Mating type and mating-type inter-conversion, p. 181–209. In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. J. N. Strathern, E. W. Jones, and J. R. Broach (Eds.). Cold Spring Harbor, New York.

    Google Scholar 

  8. Rine, J. and Herskowitz, I. 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alber, T. and Kawasaki, G. 1982. Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cereiitsiae. J. Mol. Appl. Genet. 1:419–434.

    CAS  PubMed  Google Scholar 

  10. Shuster, J., Yu, J., Cox, D., Chan, R.V.L., Smith, M. and Young, E. 1986. ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. Mol. Cell. Biol. 6:1894–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beier, D.R. and Young, E.T. 1982. Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature 300:724–728.

    Article  CAS  PubMed  Google Scholar 

  12. Kilmartin, J.V. and Adams, A.E.M. 1983. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.

    Article  Google Scholar 

  13. Schultz, L.D., Tanner, J., Hofmann, K.J., Emini, E.A., Condra, J.H., Jones, R.E., Kieff, E., and Ellis, R.W. 1987. Expression and secretion in yeast of a 400 kDa envelope glycoprotein derived from Epstein-Barr virus. Gene 54:113–123.

    Article  CAS  PubMed  Google Scholar 

  14. Kramer, R.A., DeChiara, T.M., Schaber, M.D., and Hilliker, S. 1984. Regulated expression of a human interferon gene in yeast: Control by phosphate concentration or temperature. Proc. Natl. Acad. Sci. USA 81:367–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlcin, V.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenquela, P., and Barr, P.J. 1984. α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:4642–4646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ernst, J.F. 1986. Improved secretion of heterologous proteins by Saccharomyces cerevisiae: Effects of promoter substitution in alpha-factor fusions. DNA 5:483–491.

    Article  CAS  PubMed  Google Scholar 

  17. Smith, R.A., Duncan, M.J. and Moir, D.T. 1985. Heterologous protein secretion from yeast. Science 229:1219–1224.

    Article  CAS  PubMed  Google Scholar 

  18. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  19. Sinha, N.D., Biernat, J. McManus, J., and Koster, H. 1984. Polymer support oligonucleotide synthesis XVIII: Use of bcta-cyanoethyl-n, n-dialkylamino-/n-morpholino phosphoramidite for synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucl. Acid Res. 12:4539–4557.

    Article  CAS  Google Scholar 

  20. Sanger, F., Nicklens, S., and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guarente, L. and Ptashne, M. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beggs, J.D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–108.

    Article  CAS  PubMed  Google Scholar 

  23. Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  24. Maccecchini, M.-L., Rudin, Y., Blobel, G., and Schatz, G. 1979. Import of proteins into mitochondrially made F-1 ATPase subunits in yeast Proc. Natl. Acad. Sci. USA 76:343–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sledziewski, A., Bell, A., Kelsay, K. et al. Construction of Temperature–Regulated Yeast Promoters Using the Matα2 Repression System. Nat Biotechnol 6, 411–416 (1988). https://doi.org/10.1038/nbt0488-411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0488-411

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing