Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental Methods for On–Line Mass Spectrometry in Fermentation Technology*

Abstract

It is shown here how mass spectrometry (MS) can be used for on–line data acquisition in fermentation. MS was applied in this work to analyze gas and liquid phases. Gas phase analysis allows fast and accurate measurement of all gases of interest (O2, N2, CO2, Ar, He etc.). Liquid phase analysis is possible with a steam sterilizable membrane probe and permits direct analysis of dissolved gases (O2, CO2, N2) and various volatiles. Automatic switching between gas inlet and membrane probe and the data reduction was accomplished by desk computer. Continuous yeast fermentation was monitored over long periods to study long–term stability, which seems to be adequate for fermentation processes.

*Parts of this work were presented at the 2nd European Congress Biotechnology in Eastbourne, U.K., 1981, and at the 9th International Mass Spectrometry Conference in Vienna, A, 1982.

**Symbols used in this paper appear preceding the reference section.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Norris, P.E. and Scrivens, J.H. 1981. On-line mass spectrometry evaluation and implementation, Dyn. Mass Spectrometry 6: 155–166.

    CAS  Google Scholar 

  2. Fite, W.L., Patterson, T.A., Siegel, M.W., and Brackmann, R.T. 1981. Quadrupole mass spectrometry in process monitoring and control, Dyn. Mass Spectrometry 6: 167–180.

    CAS  Google Scholar 

  3. Schuy, K.D. 1967. Der Beitrag der Massenspektrometrie zur Steuerung und Kontrolle industrieller Fertigungsprozesse. Z. Instr. 75: 190–195.

    CAS  Google Scholar 

  4. Tailliez, B.Y., and Hume, S.H. 1981. The use of time-of-flight mass spectrometry (TOFMS) in process monitoring and control. Dyn. Mass Spectrometry. 6: 181–192.

    CAS  Google Scholar 

  5. Crawford, R.W., Bedford, R.G., Wong, C.M., Brand, H.R., and Kishiyama, K.I. 1981. Use of an automated mass spectrometer for an underground coal gasification field test. Dyn. Mass Spectrometry 6: 195–211.

    CAS  Google Scholar 

  6. Hunter, J.A., Stacy, R.W., and Hitchcock, F.A. 1949. A mass spectrometer for continuous gas analysis. Rev. Scient. Instrum. 20: 333–336.

    Article  CAS  Google Scholar 

  7. Muysers, K. and Smidt, U. 1972. p. 601–622. Clinical uses of mass spectrometry. In: Biochemical applications of Mass Spectrometry. Waller G. R. (ed.), Wiley Interscience, New York.

    Google Scholar 

  8. Poll, A., Potter, C.J., and Tily, P.J. 1970. On-line analysis of reactor products by mass spectrometry. Chem. Eng. (London) N244: CE413–CE418.

    Google Scholar 

  9. Cameresi, G.G. and Costa, B. 1978. Real time control of industrial processes by application of a quadrupole M.S. computer system. Adv. Mass Spectrometry 7B: 1062–1068.

    CAS  Google Scholar 

  10. Tonge, G.M. 1980. Instrumentation and control in fermentation: The application of computer controlled mass spectrometry. 5th Intern. Ferm. Symp., London, Canada (abstr).

    Google Scholar 

  11. Tal'roze, V.L., Gorodetsky, I.G., Zolotoy, N.B., Karpov, G.V., Skurat, V.E., and Maslennikova, V. Ya. 1978. Capillary system for continuous introducing of volatile liquids into analytical mass spectrometers and its applications. Adv. Mass Spectrometry 7B: 858–864.

    CAS  Google Scholar 

  12. Pungor, E., Perley, C.R., Cooney, C.L., and Weaver, J.C. 1981. Continuous monitoring of fermentation outlet gas using a computer coupled MS. Biotechnol. Letters 2: 409–414.

    Article  Google Scholar 

  13. Matz, G. 1981. Ein mobiles Massenspektrometersystem zur Erfassung umweltbelastender Schadstoffe. Hochschule der Bundeswehr, Hamburg. (Ph.D. thesis).

    Google Scholar 

  14. Ottley, T.W. 1981. A quadrupole system for atmospheric pollution monitoring. Dyn. Mass Spectrometry 6: 212–219.

    CAS  Google Scholar 

  15. Hwang, S.T. and Kammermeyer, K. 1981. Membranes in Separations. Wiley and Sons (Wiley Interscience), New York.

    Google Scholar 

  16. Ponte, J. and Durves, M.J. 1979. The use in physiology of a rapidly responding mass-spectrometer sensor. Recent Dev. Mass Spectrom. Biochem. Med. 6: 483–487.

    Google Scholar 

  17. Woldring, S., Owens, G., and Woolford, D. 1966. Blood gases; continuous in vivo recording of partial pressures by mass spectrography. Science. 153: 885–887.

    Article  CAS  Google Scholar 

  18. Brantigan, J.W., Gott, V.L., Vestal, M.L., Fergusson, G.J., and Johnson, W.H. 1970. A non thrombogenic diffusion membrane for continuous in vivo measurement of blood gases by mass spectrometry. J. Appl. Physiol. 28: 375–377.

    Article  Google Scholar 

  19. Johnson, T.D., Watkins, G.M., Holsinger, J., Roberts, M.P., and Thomas, D.D. 1979. The development of a flexible mass spectrometer catheter. Recent Dev. Mass Spectrom. Biochem. Med. 5: 463–480.

    Article  Google Scholar 

  20. Reuss, M., Piehl, H., and Wagner, F. 1975. Application of mass spectrometry to the measurement of dissolved gases and volatile substances in fermentation. Europe. J. Appl. Microbiol. Biotechnol. 1: 323–325.

    Article  CAS  Google Scholar 

  21. Heinzle, E. and Lafferty, R.M. 1980. Continuous mass spectrometric measurement of dissolved H2, O2 and CO2 during chemolitho-autotrophic growth of Alcaligenes eutrophus strain H 16. Europ. J. Appl. Microbiol. Biotechnol. 11: 17–22.

    Article  CAS  Google Scholar 

  22. Pungor, E., Schaefer, E., Weaver, J.C., and Cooney, C.L. 1981. p. 393–398. Direct monitoring of a fermentation in a computer-mass spectrometer-fermentor system. In: Advances in Biotechnology. 1: M. MooYoung, C. W. Robinson, and C. Vezina (ed). Pergamon Press, Toronto.

    Google Scholar 

  23. Jouanneau, Y., Kelly, B.C., Berlier, Y., Lespinat, P.A., and Vignais, P.M. 1980. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata. J. Bacteriol. 143: 628–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lundsgaard, J.S., Peterson, L.C., and Degn, H. 1976. p. 168–183. Mass spectrometric determination of oxygen kinetics in biochemical systems. In: Measurement of Oxygen. Proc. Interdisc. Symp., H. Degn and R. Brook (Ed.) Elsevier, Amsterdam.

    Google Scholar 

  25. Doerner, P., Lehmann, J., Piehl, H., and Megnet, R. 1982. Process analysis of the acetone-butanol fermentation by quadrupole mass spectrometry. Biotechnol. Letters 4: 557–562.

    Article  CAS  Google Scholar 

  26. Weaver, J.C., Mason, M.K., Jarrell, J.A., and Peterson, J.W. 1976. Biochemical assay by immobilized enzymes and a mass spectrometer. p. 207–225. Biochem. Biophys. Acta 438: 296–303.

    Google Scholar 

  27. Weaver, J.C. 1977. Possible biomedical applications of the volatile enzyme product method. In: Biomedical Applications of Immobilized Enzymes and Proteins. 2: T.M.S. Chang (ed.) Plenum Press.

    Google Scholar 

  28. Weaver, J.C. and Abrams, J.H. 1979. Use of variable pH interface to a mass spectrometer for the measurement of dissolved volatile compounds. Rev. Sci. Instrum. 50: 478–481.

    Article  CAS  Google Scholar 

  29. Weaver, J.C., Perley, C.R., Reames, F.M., and Cooney, C.L. 1980. Temporarily immobilized microorganisms: rapid measurements using a mass spectrometer. Biotechnol. Letters 2: 133–137.

    Article  CAS  Google Scholar 

  30. Meyenburg, K. 1969. Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae. Diss. ETH no. 4279, Zurich.

    Google Scholar 

  31. Krasnobajev, V. Givaudan, Dubendorf, CH (private communication).

  32. Furukawa, K., Heinzle, E., Dunn, I.J., and Bourne, J.R. Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. (in press).

  33. Heinzle, E., Furukawa, K., Tanner, R., and Dunn, I.J. 1982. Modelling of sustained oscillations observed in continuous culture of Saccharomyces cerevisiae. 1st Workshop on Modelling and Control of Biotechnical Processes. IFAC, Helsinki.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heinzle, E., Furukawa, K., Dunn, I. et al. Experimental Methods for On–Line Mass Spectrometry in Fermentation Technology*. Nat Biotechnol 1, 181–188 (1983). https://doi.org/10.1038/nbt0483-181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0483-181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing