Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immobilized RNA switches for the analysis of complex chemical and biological mixtures

Abstract

A prototype biosensor array has been assembled from engineered RNA molecular switches that undergo ribozyme-mediated self-cleavage when triggered by specific effectors. Each type of switch is prepared with a 5′-thiotriphosphate moiety that permits immobilization on gold to form individually addressable pixels. The ribozymes comprising each pixel become active only when presented with their corresponding effector, such that each type of switch serves as a specific analyte sensor. An addressed array created with seven different RNA switches was used to report the status of targets in complex mixtures containing metal ion, enzyme cofactor, metabolite, and drug analytes. The RNA switch array also was used to determine the phenotypes of Escherichia coli strains for adenylate cyclase function by detecting naturally produced 3′,5′- cyclic adenosine monophosphate (cAMP) in bacterial culture media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A representative RNA molecular switch that is activated by cobalt.
Figure 2: Selective immobilization and function of the AR1 molecular switch on gold surfaces.
Figure 3: A prototype RNA array constructed using engineered molecular switches.
Figure 4: Assessment of analytes in biological samples using the prototype RNA array.
Figure 5: Quantitative assessment of cAMP in E. coli 7043 culture medium.

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  2. Lockhart, D.J. & Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    Article  CAS  Google Scholar 

  3. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  4. de Wildt, R.M.T., Mundy, C.R., Gorick, B.D. & Tomlinson, I.M. Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat. Biotechnol. 18, 989–994 (2000).

    Article  CAS  Google Scholar 

  5. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289 (2000).

    Article  CAS  Google Scholar 

  6. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

    Article  CAS  Google Scholar 

  7. Marshall, K.A. & Ellington, A.D. Training ribozymes to switch. Nat. Struct. Biol. 6, 992–994 (1999).

    Article  CAS  Google Scholar 

  8. Gold, L. Polisky, B. Uhlenbeck, O. & Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  Google Scholar 

  9. Osborne, S.E. & Ellington, A.D. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370 (1997).

    Article  CAS  Google Scholar 

  10. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic aicds. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  Google Scholar 

  11. Li, Y. & Breaker, R.R. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr. Opin. Struct. Biol. 9, 315–323 (1999).

    Article  CAS  Google Scholar 

  12. Symons, R.H. Small catalytic RNAs. Annu. Rev. Biochem. 61, 641–671 (1992).

    Article  CAS  Google Scholar 

  13. Gesteland, R.F. Cech, T.R. & Atkins, J.F. (eds) The RNA world (Cold Spring Harbor LaboratoryPress, Cold Spring Harbor, NY; 1999).

    Google Scholar 

  14. Soukup, G.A. & Breaker, R.R. Nucleic acid molecular switches. Trends Biotechnol. 17, 469–476 (1999).

    Article  CAS  Google Scholar 

  15. Soukup, G.A. & Breaker, R.R. Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10, 318–325 (2000).

    Article  CAS  Google Scholar 

  16. Tang, J. & Breaker, R.R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    Article  CAS  Google Scholar 

  17. Tang, J. & Breaker, R.R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res. 26, 4214–4221 (1998).

    Article  CAS  Google Scholar 

  18. Soukup, G.A. & Breaker, R.R. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 7, 783–791 (1999).

    Article  CAS  Google Scholar 

  19. Breaker, R.R. In vitro selection of catalytic polynucleotides. Chem. Rev. 97, 371–390 (1997).

    Article  CAS  Google Scholar 

  20. Robertson, M.P. & Ellington, A.D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28, 1751–1759 (2000).

    Article  CAS  Google Scholar 

  21. Koizumi, M., Soukup, G.A. Kerr, J.Q. & Breaker, R.R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6, 1062–1071 (1999).

    Article  CAS  Google Scholar 

  22. Soukup, G.A., DeRose, E.C. & Breaker, R.R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA, in press.

  23. Soukup, G.A. & Breaker, R.R. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589 (1999).

    Article  CAS  Google Scholar 

  24. Araki, M., Okuno, Y., Hara, Y. & Sugiura, Y. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379–3384 (1998).

    Article  CAS  Google Scholar 

  25. Soukup, G.A., Emilsson, G.A.M. & Breaker, R.R. Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298, 623–632 (2000).

    Article  CAS  Google Scholar 

  26. Wang, D.Y. & Sen D. Rationally designed allosteric variants of hammerhead ribozymes responsive to the HIV-1 Tat protein. J. Mol. Biol., in press.

  27. Porta, H. & Lizardi, P.M. An allosteric hammerhead ribozyme. Biotechnology 13, 161–164 (1995).

    CAS  PubMed  Google Scholar 

  28. Kuwabara, T. et al. A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol. Cell 2, 617–627 (1998).

    Article  CAS  Google Scholar 

  29. Robertson, M.P. & Ellington, A.D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17, 62–66 (1999).

    Article  CAS  Google Scholar 

  30. Komatsu, Y., Yamashita, S., Kazama, N., Nobuoka, K. & Ohtsuka, E. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. J. Mol. Biol. 299, 1231–1243 (2000).

    Article  CAS  Google Scholar 

  31. Fedor, M.J. & Uhlenbeck, O.C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry 31, 12042–12054 (1992).

    Article  CAS  Google Scholar 

  32. Li., Y. & Breaker, R.R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

    Article  CAS  Google Scholar 

  33. Herne, T.M. & Tarlov, M.J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119, 8916–8920 (1997).

    Article  CAS  Google Scholar 

  34. Guisan, J.M., Melo, F.V. & Ballesteros, A. Determination of intrinsic properties of immobilized enzymes. 1. Kinetic studies on sepharose–staphylococcal nuclease in the absence of diffusional limitations. Appl. Biochem. Biotechnol. 6, 25 (1981).

    Article  CAS  Google Scholar 

  35. Guisan, J.M., Melo, F.V. & Ballesteros, A. Determination of intrinsic properties of immobilized enzymes. 2. Kinetic studies on sepharose–staphylococcal nuclease in the presence of diffusional limitations. Appl. Biochem. Biotechnol. 6, 37 (1981).

  36. Jose, A.M., Soukup, G.A. & Breaker, R.R. Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res., in press.

  37. Potter, K., Chaloner-Larsson, G. & Yamazaki, H. Abnormally high rate of cAMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem. Biophys. Res. Commun. 57, 379–385 (1974).

    Article  CAS  Google Scholar 

  38. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

    Google Scholar 

  39. Sabourin, D. & Beckwith, J. Deletion of the Escherichia coli crp gene. J. Bacteriol. 122, 338–340 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shah, S. & Peterkofsky, A. Characterization and generation of Escherichia coli adenylate cyclase deletion mutants. J. Bacteriol. 173, 3238–3242 (1991).

    Article  CAS  Google Scholar 

  41. Tang, J. & Breaker, R.R. Structural diversity of self-cleaving ribozymes. Proc. Natl. Acad. Sci. USA 97, 5784–5789 (2000).

    Article  CAS  Google Scholar 

  42. Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

Download references

Acknowledgements

We are grateful to Mark Reed and James Klemic for the production of gold-coated surfaces, and Michael Tarlov for helpful suggestions regarding gold–thiol immobilization. Funding for this work was provided by grants from the National Institutes of Health, the Defense Advanced Research Projects Agency (DARPA), and the Yale Diabetes and Endocrinology Research Center. R.R.B. is the recipient of a Hellman Family Fellowship and a fellowship from the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Breaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seetharaman, S., Zivarts, M., Sudarsan, N. et al. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol 19, 336–341 (2001). https://doi.org/10.1038/86723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing