Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The potential of nucleic acid repair in functional genomics

Abstract

Chimeric RNA/DNA oligonucleotides have been used successfully to correct point and frameshift mutations in cells as well as in animal and plant models. This approach is one of several nucleic acid repair technologies that will help elucidate the function of newly discovered genes. Understanding the mechanisms by which these different technologies direct gene alteration is essential for progress in their application to functional genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified scheme of different approaches for gene targeting and correction at the RNA level.

© Bob Crimi

Figure 2: Simplified scheme of different approaches for gene targeting and correction at the DNA level.

© Bob Crimi

Figure 3: Schematic representation of the constructs used in the yeast assay system.
Figure 4: Experimental assay system used to test gene repair in live Saccharomyces cerevisiae cells.

Similar content being viewed by others

References

  1. Cech, T.R. Ribozymes and their medical implications. J.A.M.A. 260, 3030–3034 (1988).

    Article  CAS  Google Scholar 

  2. Rossi, J.J. Ribozymes. Curr. Opin. Biotechnol. 3, 3–7 (1992).

    Article  CAS  Google Scholar 

  3. Yu, M., Poeschla, E. & Wong-Staal, F. Progress towards gene therapy for HIV infection. Gene Ther. 1, 13–26 (1994).

    CAS  PubMed  Google Scholar 

  4. Phylactou, L.A., Darrah, C. & Wood, M.J.A. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat. Genet. 18, 378–381 (1998).

    Article  CAS  Google Scholar 

  5. Lan, N. et al. Ribozyme-mediated repair of sickle β-globin mRNAs in erythrocyte precursors. Science 280, 1593–1596 (1998).

    Article  CAS  Google Scholar 

  6. Long, M.B. & Sullenger, B.A. Evaluating group I intron catalytic efficiency in mammalian cells. Mol. Cell. Biol. 19, 6479–6487 (1999).

    Article  CAS  Google Scholar 

  7. Zarrinkar, P.P. & Sullenger, B.A. Optimizing the substrate specificty of a group I intron ribozyme. Biochemistry in press (2001).

  8. Sierakowska, H., Sambade, M.J., Agrawal, S. & Kole, R. Repair of Thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93, 12840–12844 (1996).

    Article  CAS  Google Scholar 

  9. Sierakowska, H., Gorman, L., Kang, S.H. & Kole, R. Antisense oligonucleotides and RNAs as modulators of pre-mRNA splicing. Methods Enzymol. 313, 506–521 (2000).

    Article  CAS  Google Scholar 

  10. Wilton, S.D. et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul. Disord. 9, 330–338 (1999).

    Article  CAS  Google Scholar 

  11. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).

    Article  CAS  Google Scholar 

  12. Chan, P.P. et al. Targeted correction of an episomal gene in mammalian cells by short DNA fragment tethered to a triplex-forming oligonucleotide. J. Biol. Chem. 274, 11541–11548 (1999).

    Article  CAS  Google Scholar 

  13. Culver, K.W. et al. Correction of chromosomal point mutations in human cells with bifunctional oligonucleotides. Nat. Biotechnol. 10, 989–993 (1999).

    Article  Google Scholar 

  14. Parekh, H. et al. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res. 28, 4332–4339 (2000).

    Article  Google Scholar 

  15. Santoro, S.W. & Joyce, G.F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 38, 13330–13342 (1998).

    Article  Google Scholar 

  16. Burgin, A.B., Parodos, K., Lane, D.J. & Pace, N.R. The excision of intervening sequences from Salmonella 23S ribosomal RNA. Cell 60, 405–414 (1990).

    Article  CAS  Google Scholar 

  17. Jaeger, L., Wright, M.C. & Joyce, G.F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc. Natl. Acad. Sci. USA 96, 14712–14717 (1999).

    Article  CAS  Google Scholar 

  18. Kmiec, E.B. Targeted gene repair. Gene Ther. 6, 1–3 (1999).

    Article  CAS  Google Scholar 

  19. Gamper, H.B. et al. A plausible mechanism for gene correction by chimeric oligonucleotides. Biochemistry 39, 5808–5816 (2000).

    Article  CAS  Google Scholar 

  20. Cole-Strauss et al. Targeted gene repair directed by chimeric RNA/DNA oligonucleotide in mammalian cell-free extract. Nucleic Acids Res. 27, 1323–1330 (1999).

    Article  CAS  Google Scholar 

  21. Rice, M.C., May, G.D., Kipp, P.B., Parekh, H. & Kmiec, E.B. Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiol. 123, 1–11 (2000).

    Article  CAS  Google Scholar 

  22. Yoon, K., Cole-Strauss, A. & Kmiec, E.B. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA/DNA oligonucleotide. Proc. Natl. Acad. Sci. USA 93, 2071–2076 (1996).

    Article  CAS  Google Scholar 

  23. Cole-Strauss, A. et al. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273, 1386–1389 (1996).

    Article  CAS  Google Scholar 

  24. Kren, B.T., Cole–Strauss, A., Kmiec, E.B. & Steer, C.J. Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric oligonucleotide. Hepatology 25, 1462–1468 (1997).

    Article  CAS  Google Scholar 

  25. Kren, B.T., Bandyopadhyay, P. & Steer, C.J. In-vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat. Med. 4, 285–290 (1998).

    Article  CAS  Google Scholar 

  26. Alexeev, V. & Yoon, K. Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA–DNA oligonucleotide. Nat. Biotechnol. 16, 1343–1346 (1998).

    Article  CAS  Google Scholar 

  27. Lai, L.W., O'Connor, H.M. & Lien, Y.H. In Conference Proceedings, 1st Annual Meeting of the American Society of Gene Therapy May 21–31, 1998. (American Society of Gene Therapy, Seattle, WA; 1998).

    Google Scholar 

  28. Lai, L.-W., Chau, B. & Lien, Y.-H.H. In vivo gene targeting in carbonic anhydrase II deficient mice by chimeric RNA/DNA oligonucleotides. In Conference Proceedings, 2nd Annual Meeting of the American Society of Gene Therapy. May 21–31, 1998. (American Society of Gene Therapy, Seattle, WA; 1999).

    Google Scholar 

  29. Kren, B.T. et al. Correction of the UDP–glucuronosyltransferase gene defect in the Gunn rat model of Criglar-Najjar syndrome type I with a chimeric oligonucleotide. Proc. Natl. Acad. Sci. USA 96, 10349–10354 (1999).

    Article  CAS  Google Scholar 

  30. Alexeev, V., Igoucheva, O., Domashenko, A., Cotsavelis, G. & Yoon, K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA/DNA oligonucleotide. Nat. Biotechnol. 18, 43–50 (2000).

    Article  CAS  Google Scholar 

  31. Rando, T.A., Disatnik, M.H. & Zhou, L.Z. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. USA 10, 5363–5368 (2000).

    Article  Google Scholar 

  32. Bartlett, R.J. et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat. Biotechnol. 18, 615–622 (2000).

    Article  CAS  Google Scholar 

  33. Hohn, B. & Puchta, H. Gene therapy in plants. Proc. Natl. Acad. Sci. USA 96, 8321–8323 (1999).

    Article  CAS  Google Scholar 

  34. Beetham, P.R., Kipp, P.B., Sawyky, X.L., Antzen, C. & May, G.D. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA 15, 8774–8778 (1999).

    Article  Google Scholar 

  35. Zhou, T. et al. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. USA. 96, 8768–8773 (1999).

    Article  Google Scholar 

  36. Zhou, T. et al. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat. Biotechnol. 18, 555–558 (2000).

    Article  Google Scholar 

  37. Parekh-Olmedo, H., Czymmek, K. & Kmiec, E.B. Targeted gene repair in mammalian cells using chimeric RNA/DNA oligonucleotides and modified single-stranded vectors. Science, in press (2001).

  38. Smulevitch, S.V., Simmons, C.G., Norton, J.C., Wise, T.W. & Corey, D.R. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. Nat. Biotechnol. 14, 1700–1704 (1996).

    Article  CAS  Google Scholar 

  39. Ghoumari, A.M. et al. Gene transfer in hepatocarcinoma cell lines: in vitro optimization of a virus-free system. Gene Ther. 3, 483–490 (1996).

    CAS  PubMed  Google Scholar 

  40. Lee, R.J. & Huang, L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271, 8481–8487 (1996).

    Article  CAS  Google Scholar 

  41. Remy, J.S., Kichler, A., Mordvinov, V., Schuber, F. & Behr, P.-P. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc. Natl. Acad. Sci. USA 92, 1744–1748 (1995).

    Article  CAS  Google Scholar 

  42. Lappalainen, K., Jââskelâinen, I., Syrjânen, K., Urttl, A. & Syrjânen, S. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm. Res. 11, 1127–1131 (1994).

    Article  CAS  Google Scholar 

  43. Litzinger, D.C., Huang, L. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta. 1113, 201–227 (1992).

    Article  CAS  Google Scholar 

  44. Bandyopadhyay, P., Kren, B.T., Ma, X. & Steer, C.J. Enhanced gene transfer into HuH–7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine. Biotechniques 25, 282–292 (1998).

    Article  CAS  Google Scholar 

  45. Klein, C. & Raab-Traub, N. Human neonatal lymphocytes immortalized after microinjection of Epstein–Barr virus DNA. J. Virol. 61, 1552–1558 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis, B.R. et al. Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells. Gene Ther. 95, 437–444 (2000).

    CAS  Google Scholar 

  47. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  48. Murray, A.W. & Szostak, J.W. Pedigree analysis of plasmid segregation in yeast. Cell 34, 961–970 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues for providing us with information regarding their work, and we apologize for any omissions due to space limitations. This work was supported in part by grants from the National Institutes of Health. Special thanks go to Eric M. Roberts for his outstanding graphic and technical skills during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Kmiec.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, M., Czymmek, K. & Kmiec, E. The potential of nucleic acid repair in functional genomics. Nat Biotechnol 19, 321–326 (2001). https://doi.org/10.1038/86701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing