Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death

Abstract

Excitotoxic neuronal death, associated with neurodegeneration and stroke, is triggered primarily by massive Ca2+ influx arising from overactivation of glutamate receptor channels of the N-methyl-D-aspartate (NMDA) subtype. To search for channel blockers, synthetic combinatorial libraries were assayed for block of agonist-evoked currents by the human NR1-NR2A NMDA receptor subunits expressed in amphibian oocytes. A set of arginine-rich hexapeptides selectively blocked the NMDA receptor channel with IC50, approximately 100 nM, a potency similar to clinically tolerated blockers such as memantine, and only marginally blocked on non-NMDA glutamate receptors. These peptides prevent neuronal cell death elicited by an excitotoxic insult on hippocampal cultures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Choi, D.W. and Rothman, S.M. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13: 171–182.

    CAS  Article  Google Scholar 

  2. 2

    Choi, D.W. 1995. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18: 58–60.

    CAS  Article  Google Scholar 

  3. 3

    Nicotera, P., Ankarcrona, M., Bonfoco, E., Orrenius, S. and Lipton, S.A. 1997. Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv. Neural. 72: 95–101.

    CAS  Google Scholar 

  4. 4

    Golstein, P. 1997. Controlling cell death. Science 275: 1081–1082.

    CAS  Article  Google Scholar 

  5. 5

    Snyder, S.H. 1996. No NO prevents parkinsonism. Nature Med.. 2: 965–966.

    CAS  Article  Google Scholar 

  6. 6

    Dawson, T.M. and Dawson, V.L. 1996. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu. Rev. Med. 47: 219–227.

    CAS  Article  Google Scholar 

  7. 7

    Schinder, A.F., Olson, E.C., Spitzer, N.C. and Montal, M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16: 6125–6133.

    CAS  Article  Google Scholar 

  8. 8

    Chen, H.-S., Pellegrini, J.W., Aggarwal, S.K., Lei, F.Z., Warach, S., Jensen, R.E. et al. 1992. Open channel block of the N-methyl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12: 4427–4436.

    CAS  Article  Google Scholar 

  9. 9

    Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T., Cuervo J.H. et al. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug delivery. Nature 354: 84–86.

    CAS  Article  Google Scholar 

  10. 10

    Pinilla, C., Appel, J.R., Blanc, P. and Houghten, R.A. 1992. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques 13: 901–905.

    CAS  PubMed  Google Scholar 

  11. 11

    Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J.P., Günther, P., Seeburg, P.M. and Sakmann, B. 1992. Control by asparagine residues of calcium permeability and magnessium blockade in the NMDA receptor. Science 257: 1415–1419.

    CAS  Article  Google Scholar 

  12. 12

    Wong, E.H., Kemp, J.A., Priestley, T., Knight, A.R., Woodruff, G.N., Iversen, L.L. et al. 1986. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 83: 7104–7108.

    CAS  Article  Google Scholar 

  13. 13

    Huettner, J.E. and Bean, B.P. 1988. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl. Acad. Sci. USA 85: 1307–1311.

    CAS  Article  Google Scholar 

  14. 14

    Premkumar, L.S. and Auerbach, A. 1996. Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16: 869–880.

    CAS  Article  Google Scholar 

  15. 15

    Avénet, P., Léonardon, J., Besnard, F., Graham, D., Frost, J., Depoortere, H. et al. 1996. Antagonist properties of the stereoisomers of ifenprodil at NR1A/NR2A and NR1A/NR2B subtypes of the NMDA receptor expressed in Xenopus oocytes. Eur. J. Pharmacol. 296: 209–213.

    Article  Google Scholar 

  16. 16

    Mèziére, C., Viguier, M., Dumortier, H., Lo-Man, R., Leclerc, C., Guillet, J.G. et al. 1997. In vivo T helper cell response to retro-inverso peptidomimetics. J. Immunol. 159: 3230–3237.

    PubMed  Google Scholar 

  17. 17

    Li, M. et al. 1996. In vitro selection of peptides acting at a new site of NMDA glutamate receptors. Bio/Technology 14: 986–991.

    CAS  Google Scholar 

  18. 18

    Steiner, J.P., Hamilton, G.S., Ross, D.T., Valentine, H.L., Guo, H., Connolly, M.A. et al. 1997. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc. Natl. Acad. Sci. USA 94: 2019–2024.

    CAS  Article  Google Scholar 

  19. 19

    Hara, H., Friedlander, R.M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z. et al. 1997. Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94: 2007–2012.

    CAS  Article  Google Scholar 

  20. 20

    Hunter, A.J. 1997. Calcium antagonists: their role in neuroprotection. Int. Rev. Neurobiol. 40: 95–108.

    CAS  Article  Google Scholar 

  21. 21

    Lyden, P.D. 1997. GABA and neuroprotection. Int. Rev. Neurobiol. 40: 233–258.

    CAS  Article  Google Scholar 

  22. 22

    Grilli, M., Pizzi, M., Memo, M. and Spano, P. 1996. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappa B activation. Science 274: 1383–1385.

    CAS  Article  Google Scholar 

  23. 23

    McBurney, R.W. 1997. Development of the NMDA ion-channel blocker, aptiganel hydrochloride, as a neuroprotective agent for acute CNS injury. Int. Rev. Neurobiol. 40: 173–195.

    CAS  Article  Google Scholar 

  24. 24

    Parsons, C.G., Panchenko, V.A., Pinchenko, V.O., Tsyndrenko, A.Y. and Krishtal, O.A. 1996. Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine. Eur. J. Neurosci. 8: 446–454.

    CAS  Article  Google Scholar 

  25. 25

    Herrero, J.F., Headley, P.M. and Parsons, C.G. 1994. Memantine selectively depresses NMDA receptor-mediated responses of rat spinal neurones in vivo. Neurosci. Lett. 165: 37–40.

    CAS  Article  Google Scholar 

  26. 26

    Vorwerk, C.K., Lipton, S.A., Zurakowski, D., Hyman, B.T., Sabel, B.A., Dreyer, E.B. et al. 1996. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest. Ophthalmol. Vis. Sci. 37: 1618–1624.

    CAS  PubMed  Google Scholar 

  27. 27

    Kochhar, A., Zivin, J.A., Lyden, P.D. and Mazzarella, V. 1988. Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch. Neurol. 45: 148–153.

    CAS  Article  Google Scholar 

  28. 28

    Weseman, W., Sturn, G. and Fünfgeld, E.W. 1980. Distribution and metabolism of the potential anti-Parkinson drug memantine in the human. J. Neural Transm. Suppl. 16: 143–148.

    Google Scholar 

  29. 29

    Kornhuber, J. and Weller, M. 1997. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol. Psychiatry 41: 135–144.

    CAS  Article  Google Scholar 

  30. 30

    Kornhuber, J. and Quack, G. 1995. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man. Neurosci. Lett. 195: 137–139.

    CAS  Article  Google Scholar 

  31. 31

    Dooley, C.T., Chung, N.N., Wilkes, B.C., Schiller, P.W., Bidlack, J.M., Pasternak, G.W. et al. 1994. An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library. Science 266: 2019–2022.

    CAS  Article  Google Scholar 

  32. 32

    Houghten, R.A. 1985. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131–5135.

    CAS  Article  Google Scholar 

  33. 33

    Ostresh, J.M., Winkle, J.H., Hamashin, V.T. and Houghten, R.A. 1994. Peptide libraries: Determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers 34: 1681–1689.

    CAS  Article  Google Scholar 

  34. 34

    Tam, J.P., Heath, W.F. and Merrifield, R.B. 1983. SN2 deprotection of synthetic peptides with a low concentration of HF in dimethyl sulfide: evidence and application in peptide synthesis. Journal of the American Chemical Society 105: 6442–6455.

    CAS  Article  Google Scholar 

  35. 35

    Houghten, R.A., Bray, M.K., De Graw, S.T. and Kirby, C.J. 1986. Simplified procedure for carrying out simultaneous multiple hydrogen fluoride cleavages of protected peptide resins. Int. J. Pept. Protein Res. 27: 673–678.

    CAS  Article  Google Scholar 

  36. 36

    Ferrer-Montiel, A.V. and Montal, M. 1994. Structure-function relations in ligand-gated ion channels: Reconstitution in lipid bilayers and heterologous expression in Xenopus oocytes. Methods: A Companion to Methods in Enzymology 6: 60–69.

    CAS  Article  Google Scholar 

  37. 37

    Ferrer-Montiel, A.V., Sun, W. and Montal, M. 1995. Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proc. Natl. Acad. Sci. USA 92: 8021–8025.

    CAS  Article  Google Scholar 

  38. 38

    Ferrer-Montiel, A.V., Sun, W. and Montal, M. 1996. A single tryptophan on M2 of glutamate receptor channels confers high permeability to divalent cations. Biophys. J. 71: 749–758.

    CAS  Article  Google Scholar 

  39. 39

    Sun, W., Ferrer-Montiel, A.V., Schinder, A.F., McPherson, J.P., Evans, G.A., Montal, M. et al. 1992. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. Proc. Natl. Acad. Sci. USA 89: 1443–1447.

    CAS  Article  Google Scholar 

  40. 40

    Planells-Cases, R., Sun, W., Ferrer-Montiel, A.V. and Montal, M. 1993. Molecular cloning, functional expression, and pharmacological characterization of an N-methyl-D-aspartate receptor subunit from human brain. Proc. Natl. Acad. Sci. USA 90: 5057–5061.

    CAS  Article  Google Scholar 

  41. 41

    Le Bourdelles, B., Wafford, K.A., Kemp, J.A., Marshall, G., Bain, C., Wilcox, A.S. et al. 1994. Cloning, functional expression, and pharmacological characterisation of human cDNAs encoding NMDA receptor NR1 and NR2A subunits. J. Neurochem. 62: 2091–2098.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauricio Montal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrer-Montiel, A., Merino, J., Blondelle, S. et al. Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death. Nat Biotechnol 16, 286–291 (1998). https://doi.org/10.1038/nbt0398-286

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing