Research | Published:

Manipulation of the Repertoire of Digestive Enzymes Secreted into the Gastrointestinal Tract of Transgenic Mice

Bio/Technologyvolume 11pages376379 (1993) | Download Citation



In non-ruminant livestock the energy which can be derived from dietary cellulose and xylan is limited by the inefficient microbial fermentation of these polymers in the hind-gut. Furthermore, in poultry, cereal-derived plant structural polysaccharides impair normal digestive function through the formation of gel-like structures, which trap nutrients rendering them unavailable to the animal. The nutrition of non-ruminant livestock could be significantly improved by the depolymerization of plant structural polysaccharides, through the introduction of cellulase activity into the small intestines of these animals. Here we describe the expression of Clostridium thermocellum endoglucanase E in the exocrine pancreas of transgenic mice. A non-glycosylated active enzyme is secreted into the small intestines, and is resistant to proteolytic inactivation, demonstrating the feasibility of generating non-ruminant animals with the endogenous capacity to depolymerize plant structural polysaccharides in the small intestines.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Gilbert, H.J. and Hazlewood, G.P. 1991. Genetic manipulation of fibre digestion. Proc. Nutr. Soc. 50: 173–184.

  2. 2

    Pettersson, D. and Aman, P. 1989. Enzyme supplementation of a poultry diet containing rye and wheat. Br. J. Nut. 62: 139–149.

  3. 3

    Hesselman, K. and Aman, P. 1986. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low or high viscosity. Animal Feed Sci. Technol. 15: 83–93.

  4. 4

    Durrant, A.J., Hall, J., Hazlewood, G.P. and Gilbert, H.J. 1991. The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem. J. 273: 289–293.

  5. 5

    Hall, J., Barker, P., Hazlewood, G.P. and Gilbert, H.J. 1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69: 29–38.

  6. 6

    Ornitz, D.M., Palmiter, R.D., Hammer, R.E., Brinster, R.L., Swift, G.H. and MacDonald, R.L. 1985. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature 313: 600–602.

  7. 7

    Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. and Palmiter, R.D. 1988. Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85: 836–840.

  8. 8

    Gordon, K., Lee, E., Vitale, J.A., Smith, A.E., Westphal, H. and Henninghausen, L. 1987. Production of human tissue plasminogen activator in transgenic mouse milk. Bio/Technology 5: 1183–1187.

  9. 9

    Whitelaw, C.B.A., Archibald, A.L., Harris, S., McClenaghan, M., Simons, J.P. and Clark, A.J. 1991. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Research 1: 3–13.

  10. 10

    Palmiter, R.D., Sandgren, E.P., Avarbock, M.R., Allen, J.M. and Brinster, R.L. 1991. Heterologous introns can enhance expression in transgenes in mice. Proc. Natl. Acad. Sci. USA 88: 478–482.

  11. 11

    Soole, K.L., Hall, J., Jepson, M.A., Hazlewood, G.P., Gilbert, H.J. and Hirst, B.H. 1992. Constitutive secretion of a bacterial enzyme by polarized epithelial cells. J. Cell Sci. 102: 495–504.

  12. 12

    Hall, J., Hazlewood, G.P., Surani, M.A., Hirst, B.H. and Gilbert, H.J. 1990. Eukaryotic and prokaryotic signal peptides direct secretion of a bacterial endoglucanase by mammalian cells J. Biol. Chem. 265: 19996–19999.

  13. 13

    Hall, J., Hirst, B.H., Hazlewood, G.P. and Gilbert, H.J. 1992. The use of chimeric gene constructs to express a bacterial endoglucanase in mammalian cells. Biochim. Biophys. Acta 1130: 259–266.

  14. 14

    Scheele, G.A. and Kern, H.F. 1989. In: Handbook of Physiology: The Gastrointestinal System, Vol. III, p. 447–498. J. G. Forte (Ed. ). American Physiological Society, Bethesda, Md.

  15. 15

    Soole, K.L., Hirst, B.H., Hazlewood, G.P., Gilbert, H.J., Laurie, J.I. and Hall, J. 1992. Differential secretion of a prokaryotic cellulase in bacterial and mammalian cells. Gene, In press

  16. 16

    Wood, T.M. 1989. Mechanism of cellulose degradation by enzymes from aerobic and anaerobic fungi, p. 17–35. In: Enzyme Systems for Lignocellulose Degradation pp. 17–35 M.P. Coghlan (Ed. ). Elsevier Applied Science, London, UK.

  17. 17

    Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C. and Evans, R.M. 1982. Dramatic growth of mice that develop from eggs microinjectcd with metallothionein-growth hormone fusion genes. Nature 300: 611–615.

  18. 18

    Jaeger, J.L., Shimizu, N. and Gitlin, J.D. 1991. Tissue-specific ceruloplasmin gene expression in the mammary gland. Biochem. J. 280: 671–677.

  19. 19

    Teather, R.M. and Wood, P.J. 1982. Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine, rumen. Appl. Environ. Microbiol. 43: 777–780.

  20. 20

    Poole, D.M., Hazlewood, G.P., Laurie, J.I., Barker, P.J. and Gilbert, H.J. 1990. Nucleotide sequence of the Ruminococcus albus 5y3 celB endoglucanase genes celA and CelB .Mol. Gen. Genet. 223: 217–223.

  21. 21

    Hall, J. and Gilbert, H.J. 1988. The nucleotide sequence of a carboxymethylcellulase gene from Pseudomonasftuorescens subsp. cellulosa . Mol. Gen. Genet. 213: 112–117.

  22. 22

    Hall, J., Hazlewood, G.P., Huskisson, N.S., Durrant, A.J. and Gilbert, H.J. 1989. Conserved serine-rich sequences in xylanase and cellulase from Pseudo fluorescens subspecies cellulosa: internal signal sequence and unusual processing. Mol. Microbiol. 3: 1211–1219.

Download references

Author information

Author notes

  1. Harry J. Gilbert: Corresponding author.


  1. Department of Biological and Nutritional Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, U.K.

    • Judith Hall
    • , Barry H. Hirst
    •  & Harry J. Gilbert
  2. Department of Physiological Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, U.K.

    • Judith Hall
  3. Department of Molecular Embryology, AFRC Institute of Animal Physiology and Genetics Research, Cambridge, CB2 4AT, U.K.

    • Simi Ali
  4. Department of Biochemistry, AFRC Institute of Animal Physiology and Genetics Research, Cambridge, CB2 4AT, U.K.

    • M. Azim Surani
    •  & Geoffrey P. Hazlewood
  5. Department of Molecular Genetics, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, EH25 9PS, U.K.

    • A. John Clark
    •  & J. Paul Simons


  1. Search for Judith Hall in:

  2. Search for Simi Ali in:

  3. Search for M. Azim Surani in:

  4. Search for Geoffrey P. Hazlewood in:

  5. Search for A. John Clark in:

  6. Search for J. Paul Simons in:

  7. Search for Barry H. Hirst in:

  8. Search for Harry J. Gilbert in:

About this article

Publication history



Issue Date


Further reading