Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electrical probe of protein–DNA interactions on DNA-modified surfaces

Abstract

DNA charge transport chemistry is found to provide a sensitive method for probing protein-dependent changes in DNA structure and enzymatic reactions. Here we describe the development of an electrochemical assay of protein binding to DNA-modified electrodes based upon the detection of associated perturbations in DNA base stacking. Gold electrode surfaces that were modified with loosely packed DNA duplexes, covalently crosslinked to a redox-active intercalator and containing the binding site of the test protein, were constructed. Charge transport through DNA as a function of protein binding was then assayed. Substantial attenuation in current is seen in the presence of the base-flipping enzymes HhaI methylase and uracil DNA glycosylase, as well as with TATA-binding protein. When restriction endonuclease PvuII (R.PvuII) binds to its methylated target, little base-stacking perturbation occurs and little diminution in current flow is observed. Importantly, the kinetics of restriction by R.PvuII of its nonmethylated target is also easily monitored electrochemically. This approach should be generally applicable to assaying protein–DNA interactions and reactions on surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the fabrication of DNA-modified gold electrodes for electrochemical analysis of protein binding and reaction.
Figure 2: Chronocoulometry at –575 mV of DM covalently crosslinked to thiol-terminated DNA films on gold electrodes with and without bound protein (1 μM).
Figure 3: Kinetics of DNA restriction monitored electrically.

Similar content being viewed by others

References

  1. Nunez, M.E. & Barton, J.K. Probing DNA charge transport with metallointercalators. Curr. Opin. Chem. Biol. 4, 199–206 (2000).

    Article  CAS  Google Scholar 

  2. Kelley, S.O. & Barton, J.K. Electron transfer between bases in double helical DNA. Science 283, 375–381 (1999).

    Article  CAS  Google Scholar 

  3. Schuster, G.B. Long-range charge transfer in DNA: transient structural distortions control the distance dependence. Acc. Chem. Res. 33, 253–260 (2000).

    Article  CAS  Google Scholar 

  4. Kelley, S.O., Holmlin, R.E., Stemp, E.D.A. & Barton, J.K. Photoinduced electron transfer in ethidium-modified DNA duplexes—dependence on distance and base stacking. J. Am. Chem. Soc. 119, 9861–9870 (1997).

    Article  CAS  Google Scholar 

  5. Boon, E.M., Ceres, D.M., Drummond, T.G., Hill, M.G. & Barton, J.K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotech. 18, 1096–1100 (2000).

    Article  CAS  Google Scholar 

  6. Kelley, S.O., Jackson, N.M., Hill, M.G. & Barton, J.K. Long-range electron transfer through DNA films. Angew. Chem. Int. Ed. Eng. 38, 941–945 (1998).

    Article  Google Scholar 

  7. Kelley, S.O., Boon, E.M., Jackson, N.M., Hill, M.G. & Barton, J.K. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (1999).

    Article  CAS  Google Scholar 

  8. Rajski, S.R. & Barton, J.K. How different DNA-binding proteins affect long-range oxidative damage to DNA. Biochemistry 40, 5556–5564 (2001).

    Article  CAS  Google Scholar 

  9. Hall, D.B. & Barton, J.K. Sensitivity of DNA-mediated electron transfer to the intervening π-stack: a probe for the integrity of the DNA base stack. J. Am. Chem. Soc. 119, 5045–5046 (1997).

    Article  CAS  Google Scholar 

  10. Rajski, S.R., Kumar, S.R., Roberts, R.J., & Barton, J.K. Protein-modulated DNA electron transfer. J. Am. Chem. Soc. 121, 5615–5616 (1999).

    Article  CAS  Google Scholar 

  11. Wagenknecht, H.A., Rajski, S.R., Pascaly, M., Stemp, E.D.A. & Barton, J.K. Direct observation of radical intermediates in protein-dependent DNA charge transport. J. Am. Chem. Soc. 123, 4400–4407 (2001).

    Article  CAS  Google Scholar 

  12. Hartwich, G. et al. Electrochemical study of electron transport through thin DNA films. J. Am. Chem. Soc. 121, 10803–10812 (1999).

    Article  CAS  Google Scholar 

  13. Armistead, P.M. & Thorp, H.H. Modification of indium tin oxide electrodes with nucleic acids: detection of attomole quantities of immobilized DNA by electrocatalysis. Anal. Chem. 72, 3764–3770 (2000).

    Article  CAS  Google Scholar 

  14. Patolsky, F., Lichtenstein, A. & Willner, I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotech. 19, 253–257 (2001).

    Article  CAS  Google Scholar 

  15. Hashimoto, K., Ito, K. & Ishimori, Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem. 66, 3830–3833 (1994).

    Article  CAS  Google Scholar 

  16. Kelley, S.O., Jackson, N.M., Barton, J.K. & Hill, M.G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug. Chem. 8, 31–37 (1997).

    Article  CAS  Google Scholar 

  17. Herne, T.M. & Tarlov, M.J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119, 8916–8920 (1997).

    Article  CAS  Google Scholar 

  18. Mui, S., Boon, E.M., Hill, M.G., Barton, J.K. & Spain, E.M. Morphology of 15-mer duplexes tethered to Au(111) probed using scanning probe microscopy. Langmuir 17, 5727–5730 (2001).

    Article  Google Scholar 

  19. Kelley, S.O. et al. Orienting DNA helices on gold using applied electric fields. Langmuir 14, 6781–6784 (1998).

    Article  CAS  Google Scholar 

  20. Bard, A.J. & Faulkner, L.R. Electrochemical methods (Wiley and Sons, New York; 1980).

  21. Anson, F.C. & Osteryoung, R.A. Chronocoulometry—a convenient, rapid and reliable technique for detection and determination of adsorbed reactants. J. Chem. Ed. 60, 293–296 (1983).

    Article  CAS  Google Scholar 

  22. Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. & Roberts, R.J. Crystal-structure of the Hhal DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74, 299–307 (1993).

    Article  CAS  Google Scholar 

  23. O'Gara, M., Klimasauskas, S., Robers, R. J. & Cheng, X.D. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaI methyltransferase–DNA–AdoHcy complexes. J. Mol. Biol. 261, 634–645 (1996).

    Article  CAS  Google Scholar 

  24. Mi., S., Alonso, D. & Roberts, R.J. Functional-analysis of gln-237 mutants of Hhal methyltransferase. Nucleic Acids Res. 23, 620–627 (1995).

    Article  CAS  Google Scholar 

  25. Garcia, R.A., Bustamante, C.J. & Reich, N.O. Sequence-specific recognition by cytosine C-5 and adenine N-6 DNA methyltransferases requires different deformations of DNA. Proc. Natl. Acad. Sci. USA 93, 7618–7622 (1996).

    Article  CAS  Google Scholar 

  26. O'Gara, M., Horton, J.R., Roberts, R.J. & Cheng, X. Structures of HhaI methyltransferase complexed with substrates containing mismatches at the target base. Nature Sruct. Biol. 5, 872–877 (1998).

    Article  CAS  Google Scholar 

  27. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  28. Stivers, J.T., Pankiewicz, K.W. & Watanabe, K.A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952–963 (1999).

    Article  CAS  Google Scholar 

  29. Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor-groove of a TATA element. Nature 365, 520–527 (1993).

    Article  CAS  Google Scholar 

  30. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal-structure of a yeast TBP TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  Google Scholar 

  31. Cheng, X., Balendiran, K., Schildkraut, I. & Anderson, J.E. Structure of PvuII endonuclease with cognate DNA. EMBO J. 13, 3927–3935 (1994).

    Article  CAS  Google Scholar 

  32. Johnston, P.J. & Bryant, P.E. Lack of interference of DNA single-strand breaks with the measurement of double-strand breaks in mammalian-cells using the neutral filter elution assay. Nucleic Acids Res. 19, 2735–2738 (1991).

    Article  CAS  Google Scholar 

  33. Arcamone, F. Doxorubicin: anticancer antibiotics (Academic Press, New York; 1981).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH for their financial support (GM61077) and for an NRSA predoctoral fellowship (E.M.B.). We thank also the Caltech SURF program for a summer undergraduate fellowship (J.E.S.) and Donato Ceres for assistance in obtaining the scanning force microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K. Barton.

Ethics declarations

Competing interests

Jacqueline K. Barton is a Founding Director of GeneOhm Sciences Inc. in San Diego, CA. GeneOhm Sciences has exclusive rights to license Caltech patents based upon this technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boon, E., Salas, J. & Barton, J. An electrical probe of protein–DNA interactions on DNA-modified surfaces. Nat Biotechnol 20, 282–286 (2002). https://doi.org/10.1038/nbt0302-282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing