Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin

Abstract

The ability of plants to metabolize the xenobiotic nitrate ester, glycerol trinitrate (GTN, nitroglycerin), was examined using cultured plant cells and plant cell extracts. Intact cells rapidly degrade GTN with the initial formation of glycerol dinitrate (GDN) and the later formation of glycerol mononitrate (GMN). A material balance analysis of these intermediates indicates little, if any, formation of reduced, conjugated or cell-bound carbonaceous metabolites. Cell extracts were shown to be capable of degrading GTN with the simultaneous formation of GDN in stoichiometric amounts. The intermediates observed, and the timing of their appearance, are consistent with a sequential denitration pathway that has been reported for the microbial degradation of nitrate esters. The degradative activities of plant cells are only tenfold less than those reported for bacterial GTN degradation. These results suggest that plants may serve a direct degradative function for the phytoremediation of sites contaminated by organic nitrate esters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, T.A., Guthrie, E.A. and Walton, B.T. 1993. Bioremediation in the rhizosphere. Environ. Scl. Technol. 27: 2630–2636.

    Article  CAS  Google Scholar 

  2. Cunningham, S.D. and Berti, W.R. 1993. Remediation of contaminated soils with green plants: An overview. In Vitro Cell Dev. Biol. 29: 207–212.

    Article  Google Scholar 

  3. Shimp, J.F., Tracy, J.C., Davis, L.C., Lee, E., Huang, W. and Erickson, L.E. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit. Rev. Environ. Sci. Technol. 23: 41–77.

    Article  CAS  Google Scholar 

  4. Cunningham, S.D. and Ow, D.W. 1996. Promise and prospects of phytoremediation. Plant Physiol. 110: 715–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nair, D.R., Burken, J.G., Licht, L.A., and Schnoor, J.L. 1993. Mineralization and uptake of triazine pesticide in soil-plant systems. J. Environ. Eng. 119: 842–854.

    Article  CAS  Google Scholar 

  6. Bellin, C.A. and O'Connor, G.A. 1990. Plant uptake of pentachlorophenol from sludge-amended soils. J. Environ. Qual. 19: 598–602.

    Article  CAS  Google Scholar 

  7. O'Connor, G.A., Kiehl, D., Eiceman, G.A. and Ryan, J.A. 1990. Plant uptake of sludge-borne PCBs. J. Environ. Qual. 19: 113–118.

    Article  CAS  Google Scholar 

  8. Harms, H., Dehnen, W. and Monch, W. 1977. Benzo(a)pyrene metabolites formed by plant cells. Z. Naturforsch. 32c: 321–326.

    Article  CAS  Google Scholar 

  9. Komossa, D., Gennity, I. and Sandermann, H. Jr. 1992. Plant metabolism of herbicides with C-P bonds: glyphosate. Pestic. Biochem. Physiol. 43: 85–94.

    Article  CAS  Google Scholar 

  10. Lee, I. and Fletcher, J.S. 1992. Involvement of mixed function oxidase systems in polychlorinated biphenyl metabolism by plant cells. Plant Cell Reports. 11: 97–100.

    Article  CAS  PubMed  Google Scholar 

  11. Bokern, M., Nimtz, M. and Harms, H.H. 1996. Metabolites of 4-n-nonylphenol in wheat cell suspension cultures. J. Agric. Food Chem. 44: 1123–1127.

    Article  CAS  Google Scholar 

  12. Harms, H.H. and Langebartels, C. 1986. Standardized plant cell suspension test systems for an ecotoxicologic evaluation of the metabolic fate of xenobiotics. Plant Science 45: 157–165.

    Article  CAS  Google Scholar 

  13. Wetzel, A. and Sandermann, H. Jr. 1994. Biochemistry of xenobiotics: Isolation and characterization of a soybean o-glucosyltransferase of DDT metabolism. Arch. Biochem. Biophys. 314: 323–328.

    Article  CAS  PubMed  Google Scholar 

  14. Wilken, A., Bock, C., Bokern, M. and Harms, H. 1995. Metabolism of different PCB congeners in plant cell cultures. Environ. Toxicol. Chem. 14: 2017–2022.

    Article  CAS  Google Scholar 

  15. Langebartels, C. and Harms, H. 1985. Analysis of nonextractable (bound) residues of pentachlorophenol In plant cells using a cell wall fractionation procedure. Ecotox. Environ. Safety 10: 268–279.

    Article  CAS  Google Scholar 

  16. Sandermann, H. Jr. 1992. Plant metabolism of xenobiotics. Trends Biochem. Sci. 17: 82–84.

    Article  CAS  PubMed  Google Scholar 

  17. Harms, H.H. 1992. In-vitro systems for studying phvtotoxicity and metabolic fate of pesticides and xenobiotics in plants. Pestic. Sci. 35: 277–281.

    Article  CAS  Google Scholar 

  18. Hall, D.R., Beevor, P.S., Campion, D.G., Chamberlain, D.J., Cork, A., White, R.D., Almestar, A. and Henneberry, T.J. 1992. Nitrate esters: Novel sex pheromone components of the cotton leafperforator, Bucculatrix thurberiella busck. (Lepidoptera: Lyonetildae). Tetrahedron Letters 33: 4811–4814.

    Article  CAS  Google Scholar 

  19. White, G.F. and Snape, J.R. 1993. Microbial cleavage of nitrate esters: Defusing the environment. J. Gen. Microbiol. 139: 1947–1957.

    Article  CAS  PubMed  Google Scholar 

  20. Wendt, T.M., Cornell, J.H. and Kaplan, A.M. 1978. Microbial degradation of glycerol nitrates. Appl. Environ. Microbiol. 36: 693–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaplan, D.L., Cornell, J.H. and Kaplan, A.M. 1982. Biodegradation of glycido and glycidyl nitrate. Appl. Environ. Microbiol. 43: 144–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ducrocq, C., Servy, C. and Lenfant, M. 1989. Bioconversion of glycerol trinitrate into mononltrate by Geotrichum candidum. FEMS Microbiol. Lett. 65: 219–222.

    Article  CAS  Google Scholar 

  23. Ducrocq, C., Servy, C. and Lenfant, M. 1990. Formation of glycerol 2-mononitrate by regioselective bioconversion of glycerol trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 12: 325–330.

    CAS  PubMed  Google Scholar 

  24. Servent, D., Ducrocq, C., Henry, Y., Guissani, A. and Lenfant, M. 1991. Nitroglycerin metabolism by Phanerochaete chrysosporium: Evidence for nitric oxide and nitrite formation. Biochem. Biophys. Acta 1074: 320–325.

    Article  CAS  PubMed  Google Scholar 

  25. Servent, D., Ducrocq, C., Henry, Y., Servy, C. and Lenfant, M. 1992. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 15: 257–266.

    CAS  PubMed  Google Scholar 

  26. Meng, M., Sun, W.-Q., Geelhaar, L.A., Kumar, G., Payne, G.F., Speedie, M.K. and Stacy, J. 1995. Denitration of glycerol trinitrate by resting cells and cell-free extracts of Bacillus thurlngiensis/cereus and Entembacter agglomerans. Appl. Environ. Microbiol. 61: 2548–2553.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. White, G.F., Snape, J.R. and Nicklin, S. 1996. Biodegradation of glycerol trinitrate and pentaerythritol tetranltrate by Agrobacterlum radiobacter. Appl. Environ. Microbiol. 62: 637–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramos, J.L., Haidour, A., Duque, E., Pinar, G., Calvo, V. and Oliva, J.-M. 1996. Metabolism of nitrate esters by a consortium of two bacteria. Nature Biotechnol. 14: 320–322.

    Article  CAS  Google Scholar 

  29. Binks, P.R., French, C.E., Nicklin, S. and Bruce, N.C. 1996. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2 Appl. Environ. Microbiol. 62: 1214–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, W.-Q., Meng, M., Kumar, G., Geelhaar, L.A., Payne, G.F., Speedie, M.K. and Stacy, J. 1996. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912. Appl. Microbiol. Biotechnol. 45: 525–529.

    CAS  PubMed  Google Scholar 

  31. Yeats, R.A., Schmid, M. and Leitold, M. 1989. Antagonism of glycerol trinitrate activity by an inhibitor of glutathione S-transferase. Biochem. Pharmacol. 38: 1749–1753.

    Article  Google Scholar 

  32. Lau, D.T.-W. and Benet, L.Z. 1990. Nitroglycerin metabolism in subcellular fractions of rabbit liver. Drug Metab. Dispos. 18: 292–297

    CAS  PubMed  Google Scholar 

  33. Hill, K.E., Hunt, R.W., Jones, R., Hoovers, R.L. and Burk, R.F. 1992. Metabolism of nitroglycerin by smooth muscle cells. Biochem. Pharmacol. 43: 561–566.

    Article  CAS  PubMed  Google Scholar 

  34. Leo, A., Hansch, C. and Elkins, D. 1971. Partition coefficients and their uses. Chemical Reviews 71: 525–616.

    Article  CAS  Google Scholar 

  35. Briggs, G.C., Bromilow, R.H. and Evans, A.A. 1982. Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13: 495–503.

    Article  CAS  Google Scholar 

  36. Topp, E., Scheunert, I., Attar, A. and Korte, F. 1986. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil. Ecotox. Environ. Safety. 11: 219–228.

    Article  CAS  Google Scholar 

  37. Ryan, J.A., Bell, R.M., Davidson, J.M. and O'Connor, G.A. 1988. Plant uptake of non-ionic organic chemicals from soils. Chemosphere. 17: 2299–2323.

    Article  CAS  Google Scholar 

  38. Paterson, S., Mackay, D., Tarn, D. and Shiu, W.Y. 1990. Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21: 297–331.

    Article  CAS  Google Scholar 

  39. Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L. and Carreira, L.H. 1995. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29: 318–323.

    Article  Google Scholar 

  40. Pesari, H. and Grasso, D. 1993. Biodegradation of an inhibitory nongrowth substrate (nitroglycerin) in batch reactors. Biotechnol. Bloeng. 41: 79–87.

    CAS  Google Scholar 

  41. Smets, B.F., Vinopal, R.T., Grasso, D., Strevett, K.A. and Kirn, B.-J. 1995. Nitroglycerin biodegradation: Theoretical thermodynamic considerations. J. Energetic Materials 13: 385–398.

    Article  CAS  Google Scholar 

  42. Ignarro, L.J., Lippton, H., Edwards, J.C., Baricos, W.H., Hyman, A.L., Kadowitz, P.J. and Gruetter, C.A. 1981. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nltrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 218: 739–749.

    CAS  PubMed  Google Scholar 

  43. Habig, W.H., Keen, J.H. and Jakoby, W.B. 1975. S-transferase in the formation of cyanide from organic thiocyanates and as an organic nitrate reduc-tase. Biochem. Biophys. Res. Comm. 64: 501–506.

    Article  CAS  PubMed  Google Scholar 

  44. Walton, B.T. and Anderson, T.A. 1992. Plant-microbe treatment systems for toxic waste. Curr. Opin. Biotechnol. 3: 267–270.

    Article  CAS  Google Scholar 

  45. Hegde, R.S. and Fletcher, J.S. 1996. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of Phytoremediation technology. Chemosphere 32: 2471–2479.

    Article  CAS  Google Scholar 

  46. Servent, D., Dslaforge, M., Ducrocq, C., Mansuy, D. and Lenfant, M. 1989. Nitric oxide formation during microsomal hepatic denitration of glycerol trinitrate: Involvement of cytochrome P-450. Biochem. Biophys. Res. Comm. 163: 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  47. Feelisch, M. and Noak, E.A. 1987. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Europ. J. Pharmacol. 139: 19–30.

    Article  CAS  Google Scholar 

  48. Marvin-Sikkema, F.D. and de Bont, J.A.M. 1994. Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol. 42: 499–507.

    Article  CAS  PubMed  Google Scholar 

  49. Spain, J.C. 1995. Biodegradation of nitroaromatic compounds. Ann. Rev. Microbiol. 49: 523–555.

    Article  CAS  Google Scholar 

  50. Schmidt, B., Thiede, B. and Rivero, C. 1994. Metabolism of the pesticide metabolites 4-nitrophenol and 3,4-dichloroaniline in carrot (Daucus carofa) cell suspension cultures. Pestic. Sci. 40: 231–238.

    Article  CAS  Google Scholar 

  51. Hughes, J.B., Shanks, J., Vanderford, M., Lauritzen, J. and Bhadra, R. Transformation of TNT by aquatic plants and plant tissue cultures. Environ. Sci. Technol.(In press).

  52. Ingersoll, J.C., Heutte, T.M. and Owens, L.D. 1996. Effect of promoter-leader sequences on transient expression of reporter gene chimeras biolistically transferred into sugar beet (Seta vulgaris) suspension cultures. Plant Cell Reports 15: 836–840.

    CAS  PubMed  Google Scholar 

  53. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory F. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, A., Kumar, G., Payne, G. et al. Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 15, 174–177 (1997). https://doi.org/10.1038/nbt0297-174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0297-174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing