Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Binding Epitope of Somatostatin Defined by Phage-Displayed Peptide Libraries

Abstract

We have developed a versatile phagemid system to display peptides on the surface of M13 bacteriophage at a copy number which approaches monovalency. In this system, a phagemid encodes a peptide fused to the ammo-terminus of the second domain (dII) of the minor coat protein pIII under control of the inducible lac promoter. The fusion protein is displayed in combination with several copies of wild-type pIII on the surface of phage. Two diverse random octapeptide libraries, one linear and one which contained flanking cysteines capable of forming disulflde bridges, were were generated using an in vitro mutagenesis approach and affinity selected on an anti-somatostatin mAb. Peptides with high affinity for the mAb were enriched only from the cyclic library and the tetrapeptide, FWKT, was identified by consensus as the binding epitope. The selected peptides exhibited not only the primary amino acid sequence but also shared structural features with somatostatin. One peptide, CRFWKTWC, also exhibited nanomolar affinities for the five known somatostatin receptor subtypes. This system can easily be adapted to display individual peptides or a wide range of custom peptide libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geysen, H.M., Meloen, R.H. and Barteling, S.J. 1984. Use of a peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 81: 3998–4002.

    Article  CAS  Google Scholar 

  2. Houghten, R.A., Appel, J.R., Blondelle, S.E., Cuervo, J.H., Dooley, C.T. and Pinilla, C. 1992. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. BioTechniques 13: 412–421.

    CAS  PubMed  Google Scholar 

  3. Christian, R.B., Zuckerman, R.N., Kerr, J.M., Wang, L. and Malcolm, B. 1992. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage. J. Mol. Biol. 227: 711–718.

    Article  CAS  Google Scholar 

  4. Cwirla, S.E., Peters, E.A., Barrett, R.W. and Dower, W.J. 1990. Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87: 6378–6382.

    Article  CAS  Google Scholar 

  5. Devlin, J.J., Panganiban, L.C. and Devlin, P.E. 1990. Random peptide libraries: A source of specific protein binding molecules. Science 249: 404–406.

    Article  CAS  Google Scholar 

  6. Parmley, S.F. and Smith, G.P. 1988. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73: 305–318.

    Article  CAS  Google Scholar 

  7. Cull, M.G., Miller, J.F. and Schatz, P.J. 1992. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac represser. Proc. Natl. Acad. Sci. USA 89: 1865–1869.

    Article  CAS  Google Scholar 

  8. Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R. and Cesareni, G. 1991. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222: 301–310.

    Article  CAS  Google Scholar 

  9. Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

    Article  CAS  Google Scholar 

  10. Stephen, C.W. and Lane, D.P. 1992. Mutant conformation of p53: Precise epitope mapping using a filamentous phage epitope library. J. Mol. Biol. 225: 577–583.

    Article  CAS  Google Scholar 

  11. Matthews, D.J. and Wells, J.A. 1993. Substrate phage: Selection of protease substrates by monovalent phage display. Science 260: 1113–1117.

    Article  CAS  Google Scholar 

  12. Oldenburg, K.R., Loganathan, D., Goldstein, I.J., Schultz, P.G. and Gallop, M.A. 1992. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA 89: 5393–5397.

    Article  CAS  Google Scholar 

  13. O'Neil, K.T., Hoess, R.H., Jackson, S.A., Ramachandran, N.S., Mousa, S.A. and DeGrado, W.F. 1992. Identification of novel peptide antagonists for gpIIb/IIIa from a conformationally constrained phage peptide library. Prot. Struct. Funct. Genet. 14: 509–515.

    Article  CAS  Google Scholar 

  14. Scott, J.K., Loganathan, D., Easley, R.B., Gong, X. and Goldstein, I.J. 1992. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc. Natl. Acad. Sci. USA 89: 5398–5402.

    Article  CAS  Google Scholar 

  15. Lawman, H.B., Bass, S.H., Simpson, N. and Wells, J.A. 1991. Selecting high-affinity binding proteins by monovalent phage display. Biochem. 30: 10832–10838.

    Article  Google Scholar 

  16. Swimmer, C., Lehar, S.M., McCaflerty, I, Chiswell, D.J., Blattler, W.A and Guild, B.C. 1992. Phage display of ricin B chain and its single binding domains: System for screening galactose-binding mutants. Proc. Natl. Acad. Sci. USA 89: 3756–3760.

    Article  CAS  Google Scholar 

  17. Garrard, L.J., Yang, M., O'Connell, M.P., Kelley, R.F. and Henner, D.J. 1991. Fab assembly and enrichment in a monovalent phage display system. Bio/Technology 9: 1373–1377.

    Article  CAS  Google Scholar 

  18. Bass, S., Greene, R. and Wfells, J.A. 1990. Hormone phage: An enrichment method for variant proteins with altered binding properties. Prot. Struct. Funct. Genet. 8: 309–314.

    Article  CAS  Google Scholar 

  19. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth. Enzymol. 154: 367–382.

    Article  CAS  Google Scholar 

  20. Barbas, C.F., III, Kang, A.S. and Benkovic, R.A.L.S.J. 1991. Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 88: 7987–7982.

    Article  Google Scholar 

  21. Gram, H., Strittmatter, U., Lorenz, M., Glueck,D. and Zenke,G. 1993. Phage display as a rapid gene expression system: production of bioactive cytokine-phage and generation of neutralizing monoclonal antibodies. J. Immunol. Methods. 161: 169–176.

    Article  CAS  Google Scholar 

  22. Van Binst, G. and Tourwe, D. 1992. Backbone modifications in somatostatin analogues: relation between conformation and activity. Peptide Res. 5: 8–13.

    CAS  Google Scholar 

  23. Delaet, N.G.J., Verheyden, P., Velkeniers, B., Hooghe-Peters, E.L., Bruns, C., Tourwe, D. and Van Binst, G. 1993. Synthesis, biological activity and conformational study of a somatostatin hexapeptide analogue containing a reduced peptide bond. Peptide Res. 6: 24–30.

    CAS  Google Scholar 

  24. Gurrath, M., Muller, G., Kessler, H., Aumailley, M. and Timpl, R. 1992. Conformational/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur. J. Biochem. 210: 911–921.

    Article  CAS  Google Scholar 

  25. Barrett, R.W., Cwirla, S.E., Ackerman, M.S., Olson, A.M., Peters, E.A. and Dower, W.J. 1992. Selective enrichment and characterization of high affinity ligands from collections of random peptides on filamentous phage. Analytical Biochem. 204: 357–364.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, R., Gram, H., Vattay, A. et al. Binding Epitope of Somatostatin Defined by Phage-Displayed Peptide Libraries. Nat Biotechnol 13, 165–169 (1995). https://doi.org/10.1038/nbt0295-165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0295-165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing