Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mixed Lactic Acid–Alcoholic Fermentation by Saccharomyes cerevisiae Expressing the Lactobacillus casei L(+)–LDH

Abstract

We describe the construction of a Saccharomyces cerevisiae strain expressing the gene encoding the L(+)–lactate dehydrogenase [L(+)–LDH)] from Lactobacillus casei. The recombinant strain is able to perform a mixed lactic acid–alcoholic fermenation. Yeast cells expressing the L(+)–LDH gene from the yeast alcohol dehydrogenase (ADH1) promoter on a multicopy plasmid simultaneously convert glucose to both ethanol and lactate, with up to 20% of the glucose transformed into L(+)–lactate. Such strains may be used in every field where both biological acidification and alcoholic fermentation are required.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Whithing, G.C. 1976. Organic acid metabolism of yeasts during fermentation of alcoholic beverages—A review. J. Inst. Brew. 82: 84–92.

    Article  Google Scholar 

  2. 2

    Witte, V., Krohn, U. and Emeis, C.C. 1989. Characterisation of yeasts with high L(+)-lactic acid production: Lactic acid specific soft agar overlay LASSO and TAFE-patterns. J. Basic Microbiol. 29: 707–716.

    CAS  Article  Google Scholar 

  3. 3

    Radler, F. 1992. Yeasts-Metabolism of organic acids, In: Wine Microbiology and Biotechnology. Fleet, G. H. (Ed.). Harwood Academic Publishers, Chur, Switzerland. 165–182.

    Google Scholar 

  4. 4

    Radler, F. 1984. On the anaerobic metabolism of organic acids of yeasts. Forum mikrobiologie. 7: 286–291.

    CAS  Google Scholar 

  5. 5

    Genga, A.M., Tassi, F. and Ferrero, I. 1983. Mitochondrial NAD, L-Lactate dehydrogenase and NAD, D-Lactate dehydrogenase in the yeast Saccharomyces cerevisiae. Microbiologica 1: 1–8.

    Article  Google Scholar 

  6. 6

    Hensel, R., Mayr, U. and Yang, C.Y. 1983. The Complete primary structure of the allosteric L(+)-LDH from Lactobacillus casei. Eur. J. Biochem. 134: 503–511.

    CAS  Article  Google Scholar 

  7. 7

    Kim, S.F., Back, S.J. and Pack, M.Y. 1991. Cloning and nucleotide sequence of the Lactobacillus casei L(+)-LDH gene. Appl. Environ. Microbiol. 57: 2413–2417.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Gasser, F. and Gasser, C. 1971. Immunological relationships among lactic dehydrogenases in the genera Laaobacillus and Leuconostoc. J. Bacteriol. 106: 113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gasser, F., Doudoroff, M. and Contopoulos, R. 1970. Purification and properties of NAD-dependent lactic dehydrogenase of different species of Lactobacillus. J. Gen. Microbiol. 62: 241–250.

    CAS  Article  Google Scholar 

  10. 10

    Gordon, F., Doudoroff, M. and Contopoulos, R. 1970. Purification, properties and immunological relationship of L(+)-LDH from Lactobacillus casei. Eur. J. Biochem. 67: 543–555.

    Article  Google Scholar 

  11. 11

    De Vries, W., Kapteijn, W.M.C., Van Der Beek, E.G. and Stouthamer, A.H. 1970. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J. Gen. Microbiol. 63: 333–345.

    CAS  Article  Google Scholar 

  12. 12

    Davies, D.D., Grego, S. and Kenworthy, P. 1974. The control of the production of lactate and ethanol by higher plants. Planta 118: 297–310.

    CAS  Article  Google Scholar 

  13. 13

    Hensel, R., Mayr, U., Stetter, K.O. and Kandler, O. 1977. Comparative studies of lactic acid dehydrogenases in lactic acid bacteria. I. Purification and kinetics of the allosteric L-lactic acid dehydrogenase from Lactobacillus casei ssp. casei and Lactobacillus curvatus. Arch. Microbiol. 112: 81–93.

    CAS  Article  Google Scholar 

  14. 14

    Boiteux, A. and Hess, B. 1970. Allosteric properties of yeast pyruvate decarboxylase. FEES Lett. 9: 293–296.

    CAS  Article  Google Scholar 

  15. 15

    Garvie, E.I. 1980. Bacterial L(+)-LDHs. Microbiological Reviews 44: 106–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Holland, R. and Pritchard, G.G. 1975. Regulation of the L(+)-LDH from Lactobacillus casei by fructose 1,6-diphosphate and metal ions. J. Bacteriol. 121: 777–784.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Mayr, U., Hensel, R., Deparade, M., Pauly, H.E., Pfleider, G. and Trommer, W.E. 1982. Structure-function relationship in the allosteric L(+)-LDHS from Lactobacillus casei and Lactobacillus curvatus. Eur. J. Biochem. 126: 549–558.

    CAS  Article  Google Scholar 

  18. 18

    Gancedo, J.M. and Gancedo, C. 1973. Concentration of intermediary metabolites in yeast. Biochimie 55: 205–211.

    CAS  Article  Google Scholar 

  19. 19

    Mizushima, S. and Kitahara, K. 1964. Quantitative studies on glycolytic enzymes in Lactobacillus plantarum. J. Bacteriol. 87: 1429–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Collins, L.B. and Thomas, T.D. 1974. Pyruvate kinase of Streptococcus lactis. J. Bacteriol. 120: 52–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Sigler, K. and Hofer, M. 1991. Mechanisms of acid extrusion in yeast. Biochim. Biophys. Acta. 1071: 375–391.

    CAS  Article  Google Scholar 

  22. 22

    Serrano, R. 1991. Transport across yeast vacuolar and plasma membranes, p. 523–585 In: The Molecular and Cellular Biology of the Yeast Saccharomyces, Vol 1. Broach, J. R., Pringle, J. R. and Jones, E. W. (Eds.). Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  23. 23

    Kumar, V., Ramakrishnan, S., Teeri, T.T., Knowles, J.K.C. and Hartley, B.S. 1992. Saccharomyces cerevisiae cells secreting an Aspergillus niger β-galactosidase grow on wey permeate. Bio/Technology 10: 82–85.

    CAS  PubMed  Google Scholar 

  24. 24

    Neale, A.D., Scopes, R.K. and Kelly, J.M. 1988. Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes. App. Microbiol. Biotechnol. 29: 162–167.

    CAS  Google Scholar 

  25. 25

    Alterthum, F. and Ingram, L.O. 1989. Efficient ethanol production from glucose, lactose and xylose by recombinant Escherichia coli. Appl. Environ. Microbiol. 55: 1943–1948.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Sambrook, J., Fritsh, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  27. 27

    Yanish-Perron, C., Vieira, J., Messing, J. 1985. Improved M13 phage cloning vector and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  Google Scholar 

  28. 28

    Parent, S.A., Fenimore, C.M. and Bostian, K.A. 1985. Vector systems for the expression analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1: 83–138.

    CAS  Article  Google Scholar 

  29. 29

    Vernet, T., Dignard, D. and Thomas, D. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52: 225–233.

    CAS  Article  Google Scholar 

  30. 30

    Lerch, H.P., Blocker, H., Kallwass, H., Hope, J., Tsai, H. and Collins, J. 1989. Cloning, sequencing and expression in Escherichia coli of the D-2-hydroxyiso-caproate dehydrogenase gene of Lactobacillus casei. Gene 78: 47–47.

    CAS  Article  Google Scholar 

  31. 31

    Hanhahan, D. 1985. Techniques for transformation of E. coli, In: DNA Cloning. Glover, D. M. (Ed.). IRL Press, Washington DC. 109–135.

    Google Scholar 

  32. 32

    Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alcali cations. J. of Bacteriol. 153: 163–168.

    CAS  Google Scholar 

  33. 33

    Racker, E. 1950. Crystalline alcohol dehydrogenase from baker yeast. J. Bio. Chem. 184: 313–319.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dequin, S., Barre, P. Mixed Lactic Acid–Alcoholic Fermentation by Saccharomyes cerevisiae Expressing the Lactobacillus casei L(+)–LDH. Nat Biotechnol 12, 173–177 (1994). https://doi.org/10.1038/nbt0294-173

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing