Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

A Streptavidin Mutant Containing a Cysteine Stretch That Facilitates Production of a Variety of Specific Streptavidin Conjugates

Abstract

The ability to produce specific Streptavidin conjugates has been considerably enhanced by using a Streptavidin mutant containing a cysteine stretch, in which sulfhydryl groups serve as unique conjugation sites. A Streptavidin molecule containing five cysteine residues at its C-terminus, referred to as Stv-28, was efficiently expressed in Escherichia coli, and purified to homogeneity. Purified Stv-28 had full biotin-binding ability and formed a subunit tetramer. Reactive sulfhydryl groups of Stv-28, derived solely from the cysteine stretch, greatly facilitate the specific conjugation of partner molecules to Streptavidin by simple sulfhydryl chemistry. In this manner, S-[14C]carboxymethylated Streptavidin and a streptavidin-fluorescein conjugate were prepared. These conjugates contain almost twenty [14C]carboxymethyl groups and fluorescein molecules, respectively, per subunit tetramer, indicating that the sulfhydryl groups of the cysteine stretch are fully reactive. More importantly, these conjugates retain full biotin-binding ability and form subunit tetramers, suggesting that the fundamental properties of Streptavidin would be unaffected by the conjugation of other partner molecules to the C-terminal cysteine stretch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bayer, E.A. and Wilchek, M. 1980. The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem. Anal. 26: 1–46.

    CAS  PubMed  Google Scholar 

  2. Fuccillo, D.A. 1985. Application of the avidin-biotin technique in microbiology. BioTechniques 3: 494–501.

    CAS  Google Scholar 

  3. Wilchek, M. and Bayer, E.A. 1988. The avidin-biotin complex in bioanalytical applications. Anal. Biochem. 171: 1–32.

    Article  CAS  PubMed  Google Scholar 

  4. Wilchek, M. and Bayer, E.A. 1990. Avidin-biotin technology. Methods Enzymol. 184: 5–13

    Article  CAS  PubMed  Google Scholar 

  5. Wilchek, M. and Bayer, E. A. 1990. Applications of avidin-biotin technology: Literature survey. Methods Enzymol. 184: 14–45.

    Article  CAS  PubMed  Google Scholar 

  6. Chaiet, L., Miller, T.W., Tausing, F. and Wolf, F.J. 1963. Antibiotic MSD-235. II. Separation and purification of synergistic components. Antimicrob Agents Chemother. 3: 28–32.

    Google Scholar 

  7. Chaiet, L. and Wolf, F.J. 1964. The properties of streptavidin, a biotin-binding protein produced by Streptomvcetes. Arch. Biochem. Biophys. 106: 1–5.

    Article  CAS  PubMed  Google Scholar 

  8. Green, N.M. 1975. Avidin. Adv. Prot. Chem. 29: 85–133.

    Article  CAS  Google Scholar 

  9. Green, N. M. 1990. Avidin and streptavidin. Methods Enzymol. 184: 51–67.

    Article  CAS  PubMed  Google Scholar 

  10. Sano, T. and Cantor, C.R. 1990. Expression of a cloned streptavidin gene in Escherichia coli Proc. Natl. Acad. Sci. U.S.A. 87: 142–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sano, T. and Cantor, C.R. 1991. Expression vectors for streptavidin-containing chimeric proteins. Biochem. Biophys. Res. Commun. 176: 571–577.

    Article  CAS  PubMed  Google Scholar 

  12. Sano, T. and Cantor, C.R. 1991. A streptavidin-protein A chimera that allows one-step production of a variety of specific antibody conjugates. Bio/Technology 9: 1387–1381.

    Article  Google Scholar 

  13. Sano, T., Glazer, A.N. and Cantor, C.R. 1992. A streptavidin-metallothionein chimera that allows specific labeling of biological materials with many different heavy metal ions. Proc. Natl. Acad. Sci. U.S.A. 89: 1534–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Argaranña, C.E., Kuntz, I.D., Birken, S., Axel, R. and Cantor, C.R. 1986. Molecular cloning and nucleotide sequence of the streptavidin gene. Nucl. Acids Res. 14: 1871–1881.

    Article  Google Scholar 

  15. Hendrickson, W.A., Pähler, A., Smith, J.L., Satow, Y., Merritt, E.A. and Phizackerley, R.P. 1989. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc. Natl. Acad. Sci. U.S.A. 86: 2190–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weber, P.C., Ohlendorf, D.H., Wendroski, J.J. and Salemme, F.R. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85–88.

    Article  CAS  PubMed  Google Scholar 

  17. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA poly-merase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113–130.

    Article  CAS  PubMed  Google Scholar 

  18. Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60–89.

    Article  CAS  PubMed  Google Scholar 

  19. Hofmann, K., Wood, S.W., Brinton, C.C., Montibeller, J.A. and Finn, F.M. 1980. Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc. Natl. Acad. Sci. U.S.A. 77: 4666–4668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. June, C.H., Ledbetter, J.A., Linsley, P.S. and Thompson, C.B. 1990. Role of the CD28 receptor in T-cell activation. Immunol. Today 11: 211–216.

    Article  CAS  PubMed  Google Scholar 

  21. Ljungquist, C., Jansson, B., Moks, T. and Uhlén, M. 1989. Thiol-directed immobilization of recombinant IgG-binding receptors. Eur. J. Biochem. 186: 557–561.

    Article  CAS  PubMed  Google Scholar 

  22. Kurzban, G.P., Bayer, E.A., Wilchek, M. and Horowite, P.M. 1991. The quatenary structure of streptavidin in urea. J. Biol. Chem. 266: 14470–14477.

    CAS  PubMed  Google Scholar 

  23. Ito, T., Smith, C.L. and Cantor, C.R. Sequence-specific DNA purification by triplex affinity capture. Proc. Natl. Acad. Sci. U.S.A. 89: 495–498.

    Article  CAS  Google Scholar 

  24. Ito, T., Smith, C.L. and Cantor, C.R. 1992. Affinity capture electrophoresis for sequence-specific DNA purification. Genetic Analysis: Techniques and Applications. In press.

    Google Scholar 

  25. Sanger, F., Nicklen, S and Coulson, A.R. 1977 DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  27. Kyhe-Andersen, J. 1984. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10: 203–209.

    Article  Google Scholar 

  28. Wei, R.-D. 1970. Assay of avidin. Methods Enzymol. 18A: 424–427.

    Article  Google Scholar 

  29. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, T., Smith, C. & Cantor, C. A Streptavidin Mutant Containing a Cysteine Stretch That Facilitates Production of a Variety of Specific Streptavidin Conjugates. Nat Biotechnol 11, 201–206 (1993). https://doi.org/10.1038/nbt0293-201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0293-201

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing