Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Renaturation, Purification and Characterization of Recombinant Fab-Fragments Produced in Escherichia coli

Abstract

Cytoplasmatic expression of murine antibody chains in Escherichia coli results in the formation of insoluble and inactive protein aggregates (inclusion bodies). By systematic variation of the parameters influencing the folding, formation of disul-fide bonds and association of the constituent polypeptide chains, we have designed a renaturation procedure allowing the production of microbially expressed Fab-fragments at yields up to 40 percent of the total amount of recombinant protein. The strategy of optimization is generally applicable for disulnde containing proteins produced as inclusion bodies in bacteria. The purified recombinant antibody fragments obtained are identical with the native murine Fab in all functional and phys-icochemical parameters tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boss, M.A., Kenten, J.H., Woo, C.R. and Emtage, J.S. 1984. Assembly for functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli. Nucleic Acids Res. 12: 3791–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabilly, S., Riggs, A.D., Pande, H., Shively, J.E., Holmes, W.E., Rey, M., Perry, L.J., Wetzel, R. and Heyneker, H.L. 1984. Generation of antibody activity from immunoglobulin chains produced in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 81: 3273–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Plückthun, A., Glockshuber, R., Pfitzinger, I., Skerra, A. and Stadl-müller, J. 1987. Engineering of antibodies with a known three-dimensional structure. Cold Spring Harbor Symp. Quant. Biol. 52: 105–112.

    Article  PubMed  Google Scholar 

  5. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.-M., Lee, T., Pope, S.H., Riordan, G. and Whitlow, M. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  PubMed  Google Scholar 

  6. Field, H., Yarranton, G.T. and Rees, A.R. 1988. A functional recombinant immunoglobulin variable domain from polypeptides produced in Escherichia coli, p. 29–34. In: Ginsberg, H., Brown, F., Lerner, R. A., and Chanock, R. M. (Eds.). Vaccines 88, Cold Spring Harbor, NY.

  7. Huston, J.S., Levinson, D., Mudget-Hunter, M., Tai, M.-S., No-votny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 85: 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Condra, J.H., Sardana, V.V., Tomassini, J.E., Schlabach, A.J., Davies, M.-E., Lineberger, D.W., Graham, D.J., Gotlib, L. and Colonno, R.J. 1990. Bacterial expression of antibody fragments thai block human rhinovirus infection in cultured cells. J. Biol. Chem. 265: 2292–2295.

    CAS  PubMed  Google Scholar 

  9. Buckel, P., Hübner-Parajsz, C., Mattes, R., Lenz, H., Haug, H. and Beaucamp, K. 1987. Cloning and nucleotide sequence of heavy- and light-chain cDNAs from a creatine-kinase-specific monoclonal antibody. Gene 51: 13–19.

    Article  CAS  PubMed  Google Scholar 

  10. Jaenicke, R. 1987. Folding and association of proteins. Prog. Bio-phys. Mol. Biol. 49: 117–237.

    Article  CAS  Google Scholar 

  11. Pelham, H.R.B. 1989. Control of protein exit from the endoplas-matic reticulum. Ann. Rev. Cell Biol. 5 1–23.

    Article  CAS  PubMed  Google Scholar 

  12. Jaenicke, R. and Rudolph, R. 1989. Folding proteins, p. 191–223. In: Protein Structure, a Practical Approach. Creighton, T. E. (Ed.). IRL Press, Oxford.

    Google Scholar 

  13. Rudolph, R. 1990. Renaturation of recombinant, disulfide-bonded proteins from “inclusion bodies”, p. 149–171. In: Modern Methods in Protein and Nucleic Acid Analysis. Tschesche, H. (Ed.) Walter de Gruyter, Berlin, New York.

    Google Scholar 

  14. Buchner, J., Jaenicke, R. and Rudolph, R. 1990. In preparation.

  15. Saxena, V.P. and Wetlaufer, D.B. 1970. Formation of three-dimensional structure in proteins. I. Rapid nonenzymatic reactivation of reduced lysozyme. Biochemistry 9: 5015–5021.

    Article  CAS  PubMed  Google Scholar 

  16. Rudolph, R., Buchner, J. and Lenz, H. 1990. Aktivierung von gentechnologisch hergestellten, in Prokaryonten exprimierten Antikörpern. Eur. Patent Application 0364926.

    Google Scholar 

  17. Odorzynski, T.W. and Light, A. 1979. Refolding of the mixed disulfide of bovine trypsinogen and gluthathione. J. Biol. Chem. 254: 4291–4295.

    CAS  PubMed  Google Scholar 

  18. Orsini, G. and Goldeberg, M.E. 1978. The renaturation of reduced chymotrypsinogen A in guanidine HCl: Refolding versus aggregation. J. Biol. Chem. 253: 3453–3458.

    CAS  PubMed  Google Scholar 

  19. Rudolph, R., Fischer, S. and Mattes, R. 1987. Process for the activating of gene-technologically produced, heterologous, disulfide bridge-containing eucaryotic proteins after expression in procary-otes. International Patent Application WO 87/02673.

    Google Scholar 

  20. Zettlmeißl, G., Rudolph, R. and Jaenicke, R. 1979. Reconstitution of lactic dehydrogenase: noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18: 5567–5571.

    Article  PubMed  Google Scholar 

  21. Goldberg, M., Rudolph, R. and Jaenicke, R. 1990. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg-white lysozyme. Biochemistry. In press.

    Google Scholar 

  22. Rudolph, R., Kiefhaber, T., Kohler, H.-H. and Buchner, J. 1990. Formation of protein inclusion bodies: Kinetic competition between folding and aggregation. Submitted.

    Google Scholar 

  23. Zettlmeissl, G., Rudolph, R. and Jaenicke, R. 1982. The yield of reactivation of lactic dehydrogenase after guanidine·HCl denatur-ation is not determined by proline cis-trans isomerization. Eur. J. Biochem. 125: 605–608.

    Article  CAS  PubMed  Google Scholar 

  24. Viitanen, P.V., Lubben, T.H., Reed, J., Goloubinoff, P., O'Keefe, D. and Lorimer, G.H. 1990. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis of chaperonin 60 groEL are K+ dependent. Biochemistry 29: 5665–5671.

    Article  CAS  PubMed  Google Scholar 

  25. Goto, Y. and Hamaguchi, K. 1981. Formation of the intrachain disulfide bond in the constant fragment of the immunoglobulin light chain. J. Mol. Biol. 146: 321–340.

    Article  CAS  PubMed  Google Scholar 

  26. Parente, A. and D'Alessio, G. 1985. Reacquisition of quarternary structure by fully reduced and denatured seminal ribonuclease. Eur. J. Biochem. 149: 381–387.

    Article  CAS  PubMed  Google Scholar 

  27. Mayforth, R.D. and Quintans, J. 1990. Designer and catalytic antibodies. New England J. Med. 323: 173–178.

    Article  CAS  Google Scholar 

  28. Wetzel, R. 1988. Active immunoglobulin fragments synthesized in E. coli-from Fab to Scantibodies. Protein Engineering 2: 169–170.

    Article  CAS  PubMed  Google Scholar 

  29. Glockshuber, R. and Plückthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  30. Lemke, G., Lamar, E. and Patterson, J. 1988. Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron 1: 73–83.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider-Schaulies, J., von Brunn, A., Schachner, M. 1990. Recombinant peripheral myelin protein po conferes both the adhesion and neural outgrowth promoting function. J. Neuroscience Research. 27: 286–297.

    Article  CAS  Google Scholar 

  32. Buecheler, U. 1988. Expression von Fd-Fragment des monoklonalen Antikörpers MAK33 in E. coli. Thesis, Universität Stuttgart.

    Google Scholar 

  33. Bradford, M.M. 1975. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 241–245.

    Google Scholar 

  34. Müller-Esterl, W. 1986. Practical considerations in enzyme-immuno-assays illustrated by a model system, p. 15–37. In: Methods of Enzymatic Analysis, 3rd Edition, Bergmeyer, H. U. (Ed.). Verlag Chemie, Weinheim.

    Google Scholar 

  35. Bergmeyer, H.U. 1974. Glutathion-reductase, p. 494–495. In: Methoden der Enzymatischen Analyse, Verlag Chemie, Weinheim.

    Google Scholar 

  36. Laemmli, U.K. 1970. Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–683.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchner, J., Rudolph, R. Renaturation, Purification and Characterization of Recombinant Fab-Fragments Produced in Escherichia coli. Nat Biotechnol 9, 157–162 (1991). https://doi.org/10.1038/nbt0291-157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0291-157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing