Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Kluyveromyces as a Host for Heterologous Gene Expression: Expression and Secretion of Prochymosin

Abstract

We have developed the yeast Kluyveromyces lactis as a host organism for the production of the milk-clotting enzyme chymosin. In contrast to Saccharomyces cerevisiae, we found that this yeast is capable of the synthesis and secretion of fully active prochymosin. Various signal sequences could be used to efficiently direct the secretion of prochymosin in Kluyveromyces, but not in S. cerevisiae. We conclude that the efficient synthetic and secretory capacity of this heterologous protein is a property of the yeast Kluyveromyces. These results have led to the development of a large scale production process for chymosin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Das, S. and Hollenberg, C.P. 1982. A high-frequency transformation system for the yeast Kluyveromyces lactis. Curr. Genet. 6: 123–128.

    Article  CAS  PubMed  Google Scholar 

  2. Sor, F. and Fukuhara, H. 1985. Structure of a linear plasmid of the yeast Kluyveromyces lactis; compact organization of the killer genome. Curr. Genet. 9: 147–155.

    Article  CAS  Google Scholar 

  3. Gunge, N. 1986. Linear DNA killer plasmids from the yeast Kluyveromyces. Yeast 2: 153–162.

    Article  CAS  PubMed  Google Scholar 

  4. Broach, J.R. 1982. The yeast plasmid 2μ circle. Cell 28: 203–204.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X.J., Saliola, M., Falcone, C., Bianchi, M.M. and Fukuhara, H. 1986. Sequence organization of the circular plasmid pKDl from the yeast Kluyveromyces drosophilarum. Nucl. Acids Res. 14: 4471–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bianchi, M.M., Falcone, C., Chen, X.J., Wéslowski-louvel, M., Frontali, L. and Fukuhara, H. 1987. Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1,6 μm circular plasmid pKD1. Curr. Genet. 12: 185–192.

    Article  CAS  Google Scholar 

  7. Foltman, B. 1970. Prochymosin and chymosin (prorennin and rennin). Methods Enzymol. 19: 421–436.

    Article  Google Scholar 

  8. Emtage, J.S., Angal, S., Doel, M.T., Harris, T.J.R., Jenkins, B., Lilley, G. and Lowe, P.A. 1983. Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc. Nat. Acad. Sci. USA 80: 3671–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mellor, J., Dobson, M.J., Roberts, N.A., Tuite, M.F., Emtage, J.S., White, S., Lowe, P.A., Patel, T. Kingsman, A.J. and Kingsman, S.M. 1983. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24: 1–14.

    Article  CAS  PubMed  Google Scholar 

  10. Moir, D.T., Mao, J., Duncan, M.J., Smith, R.A. and Kohne, T. 1985. Production of calf chymosin by the yeast Saccharomyces cerevisiae, p. 75–85 In: Developments in Industrial Microbiology. Vol. 26. Society for Industrial Microbiology, Arlington, VA.

    Google Scholar 

  11. Smith, R.A., Duncan, M.J. and Moir, D.T. 1985. Heterologous protein secretion from yeast. Science 229: 1219–1224.

    Article  CAS  PubMed  Google Scholar 

  12. Cullen, D., Gray, G.L., Wilson, L.J., Hayenga, K.J., Lamsa, M.H., Rey, M.W., Norton, S. and Berka, R.M. 1987. Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology 5: 369–376.

    CAS  Google Scholar 

  13. Harkkii, A., Uusitabo, J., Bailey, M., Penttilä, M. and Knowles, J.K.C. 1989. A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology 7: 596–603.

    Google Scholar 

  14. Dickson, R.C. and Markin, J.S. 1978. Molecular cloning and expression in E. coli of a yeast gene coding for β-galactosidase. Cell 15: 123–130.

    Article  CAS  PubMed  Google Scholar 

  15. Breunig, K.D., Dahlems, U., Das, S. and Hollenberg, C.P. 1984. Analysis of a eukaryotic β-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product. Nucl. Acids Res. 12: 2327–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andreoli, P.M. 1985. Versatile Escherichia coli–Bacillus shuttle vectors derived from runaway replication plasmids related to Clo DF13. Molec. Gen. Genet. 199: 372–380.

    Article  CAS  PubMed  Google Scholar 

  17. Yanisch-Perron, C., Vierra, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  PubMed  Google Scholar 

  18. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Mariarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P. and Barr, P.J. 1984. α-factor directed synthesis and secretion of mature foreign proteins in Sacharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81: 4642–4646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boel, E., Hansen, M.T., Hjort, I., Hoegh, I. and Fill, N.P. 1984. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger. EMBO J. 3: 1581–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Innis, M.A., Holland, M.J., McCabe, P.C., Cole, G.E., Wittman, V.P., Tal, R., Watt, K.W.K., Gelfand, D.H., Holland, J.P. and Maede, J.H. 1985. Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228: 21–26.

    Article  CAS  PubMed  Google Scholar 

  21. Von Heyne, G. 1983. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133: 17–21.

    Article  Google Scholar 

  22. Travis, J., Owen, M., George, P., Carrell, R., Rosenberg, S., Hallewell, R.A. and Barr, P.J. 1985. Isolation and properties of recombinant DNA produced variants of human α1-proteinase inhibitor. J. Biol. Chem. 260: 4384–4389.

    CAS  PubMed  Google Scholar 

  23. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of yeasts cells treated with alkali cations. J. Bacteriol. 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hollenberg, C.P., de Leeuw, A., Das, S. and van den Berg, J.A. 1983. Cloning system for Kluyveromyces species. European Patent Application 096430.

    Google Scholar 

  25. Reiss, B., Sprengel, R. and Schaller, H. 1984. Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J. 3: 3317–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bennetzen, J.L. and Hall, B.D. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257: 3018–3025.

    CAS  PubMed  Google Scholar 

  27. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  28. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sci. USA 76: 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van den Berg, J.A., Van Ooyen, A.J.J. and Rietveld, K. 1989. Kluyveromyces as a host strain. European Patent Application 0310670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, J., van der Laken, K., van Ooyen, A. et al. Kluyveromyces as a Host for Heterologous Gene Expression: Expression and Secretion of Prochymosin. Nat Biotechnol 8, 135–139 (1990). https://doi.org/10.1038/nbt0290-135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0290-135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing