Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

[Homoserine31]-Salmon Calcitonin I: Fully Active Analogue of Calcitonin Synthesized by Recombinant DNA Techniques

Abstract

We have made an active analogue of salmon calcitonin I, [homoserine 31]–salmon calcitonin I, by recombinant DNA and chemical techniques. First a calcitonin precursor, the [homoserine31]–salmon calcitonin I–(1–31) lactone, was obtained from a multi–copy fusion protein upon cyanogen bromide cleavage. The protein was expressed from a multiple–copy salmon calcitonin I gene fused to lacZ. The C–terminal homoserine was reacted with prolinamide to get the 32 amino acid peptide, [homoserine31]–salmon calcitonin I. This analogue was equipotent to the naturally–occurring salmon calcitonin I in lowering plasma calcium levels in a rat bioassay. This method thus offers an opportunity to make C–terminal amides through intermediates made by recombinant DNA methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tatemoto, K., Mutt, V. 1978 Chemical determination of polypeptide hormones. Proc. Natl. Acad. Sci. USA 75:4115–4119.

    Article  CAS  Google Scholar 

  2. Niall, H.D., Keutmann, H.T., Copp, D.H., Potts, J.T., Jr., 1969 Amino acid sequence of salmon ultimobranchial calcitonin. Proc. Natl. Acad. Sci. 64:771–778.

    Article  CAS  Google Scholar 

  3. Kempe, T., Kent, S.B.H., Chow, F., Peterson, S.M., Sundquist, W.I., L'ltalien, J.J., Harbrecht, D., Plunkett, D., DeLorbe, W.J. 1985. Multiple-copy genes: production and modification of monomeric peptides from large multimeric fusion proteins. Gene 39:239–245.

    Article  CAS  Google Scholar 

  4. Kempe, T., Chow, F., Peterson, S.M., Baker, P., Hays, W., Opperman, G., L'Italien, J.J., Long, G., Paulson, B. 1986. Production and characterization of growth hormone releasing factor analogs through recombinant DNA and chemical techniques. Bio/Technoloey 4:565–568.

    CAS  Google Scholar 

  5. Chow, F., Kempe, T., Palm, G. 1981. Synthesis of oligodeoxyribonucleotides on silica gel support. Nucleic Acids Research 9:2807–2817.

    Article  CAS  Google Scholar 

  6. Beaucage, S.L., Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters 22:1859–1862.

    Article  CAS  Google Scholar 

  7. Grosjean, H., Fiers, W. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209.

    Article  CAS  Google Scholar 

  8. Watson, R.J., Weis, J.H., Salstrom, J.S., Enquist, L.W. 1985. Expression of Herpes Simplex virus type I and type II glycoprotein D genes using the “Escherichia Coli Lac” promoter, p. 327—352. In: Recombinant DNA Research and Viruses. T. Becker (ed.). Martinus Nijhoff, The Hague.

    Chapter  Google Scholar 

  9. Halling, S.M., Smith, S. 1985. Expression in Escherchia coli of multiple products from a chimaeric gene fusion: evidence for the presence of procaryotic translational control regions within eucaryotic genes. Bio/Technology 3:715–720.

    Article  CAS  Google Scholar 

  10. Gross, E., Witkop, B. 1961. Selective cleavage of the methionyl peptide bonds in ribonuclease with cyanogen bromide. J. Am. Chem. Soc. 83:1510–1511.

    Article  CAS  Google Scholar 

  11. Dyckes, D.F., Kina, H., Sheppard, R.C. 1977. Studies on the partial synthesis of protein analogs by direct coupling to terminal homoserine lactone derivatives. Int. J. Peptide Protein Res. 9:340–348.

    Article  CAS  Google Scholar 

  12. Doyen, N., Lapresle, C. 1979. Partial non-cleavage by cyanogen bromide of a methionine-cystine bond from human serum albumin and bovine α-lactalbumin. Biochem. J. 177:251–254.

    Article  CAS  Google Scholar 

  13. Bidlingmyer, B.A., Cohen, S.A., Tarvin, T.L. 1984. Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. 336:93–104.

    Article  Google Scholar 

  14. Hewick, R.M., Hunkapiller, M.W., Hood, L.E., Dryer, W.J. 1981. A gas liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256:7990–7997.

    CAS  PubMed  Google Scholar 

  15. Tarr, G.E. 1981. Separation of amino acid phenylthiohydantoins by isocratic high performance liquid chromatography. Anal. Biochem. 111:27–32.

    Article  CAS  Google Scholar 

  16. Rittel, W., Maier, R., Brugger, M., Kambeer, B., Riniker, B., Sieber, P. 1976. Structure activity relationship of human CT. III. Biological activity of synthetic analogues with shortened or terminally modified peptide chains. Experientia 32:246–249.

    Article  CAS  Google Scholar 

  17. Austin, L.A., Heath, H. III. 1981. Medical Progress. Calcitonin: Physiology and pathophysiology. N. Engl. J. Med. 304:269–278.

    Article  CAS  Google Scholar 

  18. Heath, H., Sizemore, G.W., 1982. Radioimmunoassay for calcitonin. Clin. Chem. 28:1219–1226.

    CAS  PubMed  Google Scholar 

  19. Heath, H. III, DiBella, F.P., 1978. Reduced-volume radioimmunoassays for parathyrin and calcitonin in serum, for use in pediatric and small animal studies. Clin. Chem. 24:1833–1835.

    CAS  PubMed  Google Scholar 

  20. Sturtridge, W.C., Kumar, M.A., 1968. An improved bioassay for calcitonin. J. Endocr. 42:501–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempe, T., Chow, F., Fass, D. et al. [Homoserine31]-Salmon Calcitonin I: Fully Active Analogue of Calcitonin Synthesized by Recombinant DNA Techniques. Nat Biotechnol 6, 190–192 (1988). https://doi.org/10.1038/nbt0288-190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0288-190

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing