Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Expression of a β-Lactamase Preproinsulin Fusion Protein in Escherichia Coli

Abstract

The level of expression of a β-lactamase human preproinsulin fusion protein1 in Escherichia coli was increased by plasmid and host manipulations. The initial expression level (0.01% of total protein) was increased two- to three-fold by replacing the p-lactamase promoter with two strong promoters: trp from Serratia marcescens and lacUV5 from E. coli. Replacement of the β-lactamase ribosome binding site (RBS) with a trp RBS enhanced the yield to a total of 0.16% of the total cell protein. Proinsulin was unstable, with a half-life of 14 minutes at 37°C. Proinsulin expression was increased three-fold (to about 0.5% of the total cell protein) by incubating the host at 30°C rather than 37°C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chan, S.J., Weiss, J., Konrad, M., White, T., Bahl, C., Yu, S.-D., Mark, D., and Steiner, D.F. 1981. Biosynthesis and periplasmic segregation of human proinsulin in Escherichia coli . Proc. Natl. Acad. Sci. USA 78: 5401–5405.

    Article  CAS  Google Scholar 

  2. Goeddel, D.V., Heyneker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D.G., Ross, M.J., Miozzari, G., Crea, R. and Seeburg, P.H. 1979. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281: 544–548.

    Article  CAS  Google Scholar 

  3. Hitzeman, R.A., Hagia, F.E., Levine, H.L., Goeddel, D.V., Ammeres, G. and Hull, B.D. 1981. Expression of a human gene for interferon in yeast. Nature 293: 717–722.

    Article  CAS  Google Scholar 

  4. Mark, D.F., Lui, S.D., Creasey, A., Yamamoto, R. and Lin, L. 1984. Site-specific mutagenesis of the human fibroblast interferon gene. Submitted to Proc. Natl. Acad. Sci. USA.

  5. Villa-Komaroff, L., Efstratiadis, A., Broome, S., Lomedico, P., Tizard, R., Naber, S.P., Chick, W.L. and Gilbert, W. 1978. A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. USA 75: 3327–3731.

    Article  Google Scholar 

  6. Talmadge, K., Stahl, S. and Gilbert, W. 1980. Eukaryotic signal sequence transports insulin antigen in Escherichia coli . Proc. Natl. Acad. Sci. USA 77: 3369–3373.

    Article  CAS  Google Scholar 

  7. Bell, G.I., Swain, W.F., Pictet, R., Cordell, B., Goodman, H.M. and Rutter, W.J. 1979. Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 282: 525–527.

    Article  CAS  Google Scholar 

  8. Sures, I., Goeddel, D.V., Gray, A. and Ullrich, A. 1980. Nucleotide sequence of human preproinsulin complementary DNA. Science 208: 57–59.

    Article  CAS  Google Scholar 

  9. Queen, C. and Rosenberg, M. 1981. Differential translational efficiency explains discoordinate expression of the galactose operon. Cell 25: 241–249.

    Article  CAS  Google Scholar 

  10. Dallas, W. personal communication.

  11. Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B.S. and Stormo, G. 1981. Translational initiation in prokaryotes. Ann. Rev. Microbiol. 35: 365–403.

    Article  CAS  Google Scholar 

  12. Bachman, K. and Ptashne, M. 1978. Maximizing gene expression on a plasmid using recombination in vitro . Cell 13: 65–71.

    Article  Google Scholar 

  13. Shepard, H.M., Yelverton, E. and Goeddel, D.V. 1982. Increased synthesis in E. coli of fibroblast and leukocyte interferons through alterations in ribosome binding sites. DNA 1: 125–131.

    Article  CAS  Google Scholar 

  14. Hautala, J.A., Bassett, C.L., Giles, N.H. and Kushner, S.R. 1979. Increased expression of a eukaryotic gene in Escherichia coli through stabilization of its messenger RNA. Proc. Natl. Acad. Sci. USA 76: 5774–5778.

    Article  CAS  Google Scholar 

  15. Cheng, Y.-S.E., Zipser, D., Cheng, C.Y. and Rolseth, S.J. 1978. Isolation and characterization of mutations in the structural genes for protease III (ptr). J. Bact. 140: 125–130.

    Google Scholar 

  16. Zehnbauer, B.A., Foley, E.C., Henderson, G.W. and Markovitz, A. 1981. Identification and purification of the lon+ (capR+) gene product, a DNA-binding protein. Proc. Natl. Acad. Sci. USA. 78: 2043–2047.

    Article  CAS  Google Scholar 

  17. Emr, S.D., Hanley-Way, S. and Silhavy, T.J. 1982. Supressor mutations that restore export of a protein with a defective signal sequence. Cell 23: 79–88.

    Article  Google Scholar 

  18. Steiner, D. and Chan, S. personal communication.

  19. Talmadge, K. and Gilbert, W. 1982. Cellular location affects protein stability in Escherichia coli . Proc. Natl. Acad. Sci. USA. 79: 1830–1833.

    Article  CAS  Google Scholar 

  20. Sutcliffe, J.G. 1979. Complete nucleotide sequence of Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43: 77–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerick, A., Bertolani, B., Ben-Bassat, A. et al. Expression of a β-Lactamase Preproinsulin Fusion Protein in Escherichia Coli. Nat Biotechnol 2, 165–168 (1984). https://doi.org/10.1038/nbt0284-165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0284-165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing