Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Efficient epitope mapping by bacteriophage λ surface display

Abstract

A bacteriophage λ surface expression system, λfoo, was used for epitope mapping of human galectin-3. We constructed random epitope and peptide libraries and compared their efficiencies in the mapping. The galectin-3 cDNA was randomly digested by DNase I to make random epitope libraries. The libraries were screened by affinity selection using a microtiter plate coated with monoclonal antibodies. Direct DNA sequencing of the selected clones defined two distinct epitope sites consisting of nine and 11 amino-acid residues. Affinity selection of random peptide libraries recovered a number of sequences that were similar to each other but distinct from the galectin-3 sequence. These results demonstrate that a single affinity selection of epitope libraries with antibodies is able to define an epitope determinant as small as nine residues long and is more efficient in epitope mapping than random peptide libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, G.P. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.

    Article  CAS  Google Scholar 

  2. Wells, J.A. and Lowman, H.B. 1992. Rapid evolution of peptide and protein binding properties in vitro. Curr. Opin. Struct. Biol. 2: 597–604.

    Article  CAS  Google Scholar 

  3. Lu, Z., Murray, K.S., Cleave, V.V., LaVallie, E.R., Stahl, M.L., and McCoy, J.M. 1995. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein- protein interactions. Bio/Technology 13: 366–372.

    CAS  PubMed  Google Scholar 

  4. Kasahara, N., Dozy, A.M., and Kan, Y.W. 1994. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266: 1373–1376.

    Article  CAS  Google Scholar 

  5. Maruyama, I.N., Maruyama, H.I., and Brenner, S. 1994. λfoo: a λ phage vector for the expression of foreign proteins. Proc. Natl. Acad. Sci. USA 91: 8273–8277.

    Article  CAS  Google Scholar 

  6. Sternberg, N. and Hoess, R.H. 1995. Display of peptides and proteins on the surface of bacteriophge λ. Proc. Natl. Acad. Sci. USA 92: 1609–1613.

    Article  CAS  Google Scholar 

  7. Dunn, I.S. 1995. Assembly of functional bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the major tail protein. J. Mol. Biol. 248: 497–506.

    Article  CAS  Google Scholar 

  8. Mikawa, Y.G., Maruyama, I.N., and Brenner, S. 1996. Surface display of proteins on bacteriophage λ heads. J. Mol. Biol. 262: 21–30.

    Article  CAS  Google Scholar 

  9. Stanley, K.K. and Herz, J. 1987. Topological mapping of complement component C9 by recombinant DNA techniques suggests a novel mechanism for its insertion into target membranes. EMBO J. 6: 1951–1957.

    Article  CAS  Google Scholar 

  10. Lenstra, J.A., Kusters, J.G. and van der Zeijst, B.A.M. 1990. Mapping of viral epitopes with prokaryotic expression products. Arch. Virol. 110: 1–24.

    Article  CAS  Google Scholar 

  11. Lane, D.P. and Stephen, C.W. 1993. Epitope mapping using bacteriophage peptide libraries. Curr. Opin. Immunol. 5: 268–271.

    Article  CAS  Google Scholar 

  12. Cortese, R., Felici, F., Galfre, G., Luzzago, A., Monaci, P., and Nicosia, A. 1994. Epitope discovery using peptide libraries displayed on phage. Trends in Biotechnology 12: 262–267.

    Article  CAS  Google Scholar 

  13. Lam, K.S., Salmon, S.E., Hersc, E.M., Hruby, V.J., Kazmierski, W.M., and Knapp, R.J. 1991. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354: 82–84.

    Article  CAS  Google Scholar 

  14. Hughes, R.C. 1994. Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology 4: 5–12.

    Article  CAS  Google Scholar 

  15. Robertson, M.W., Albrandt, K., Keller, D., and Liu, F.-T. 1990. Human IgE-bind-ing protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemisty 29: 8093–8100.

    Article  CAS  Google Scholar 

  16. Woo, H.-J., Shaw, L.M., Messier, J.M., and Mercuric, A.M. 1990. The major non-integrin laminin binding protein of macrophage is identical to carbohydrate binding protein 35 (Mac-2). J. Biol. Chem. 265: 7097–7099.

    CAS  PubMed  Google Scholar 

  17. Sparrow, C.P., Leffler, H., and Barondes, S.H. 1987. Multiple soluble beta-galactoside-binding lectins from human lung. J. Biol. Chem. 262: 7383–7390.

    CAS  PubMed  Google Scholar 

  18. Wang, J.L., Werner, E.A., Laing, J.G., and Patterson, R.J. 1992. Nuclear and cytoplasmic localization of a lectin-ribonucleoprotein complex. Biochem. Soc. Trans. 20: 269–274.

    Article  CAS  Google Scholar 

  19. Liu, F.-T., Hsu, D.K., Zuberi, R.I., Hill, P.N., Shenhav, A., Kuwabara, I. et al. 1996. Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. Biochemistry 36: 6073–6079.

    Article  Google Scholar 

  20. Wang, L.-F., Plessis, D.H.D., White, J.R., Hyatt, A.D., and Eaton, B.T. 1995. Use of a gene-targeted phage display random epitope library to map an antigenie determinant on the bluetongue virus outer capsid protein VP5. J. Immunol. Method 178: 1–12.

    Article  CAS  Google Scholar 

  21. Petersen, G., Song, D., Hugle-Dorr, B., Oldenburg, I., and Bautz, E.K.F. 1995. Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol. Gen. Genet. 249: 425–431.

    Article  CAS  Google Scholar 

  22. Van Zonneveld, A.J. Van den Berg, B.M.M., Van Meijer, M., and Pannekoek, H. 1995. Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 167: 49–52.

    Article  CAS  Google Scholar 

  23. Maruyama, I.N., Mikawa, Y.G., and Maruyama, H.I. 1995. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking. J. Mol. Biol. 253: 530–546.

    Article  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2 ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  25. Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichi N. Maruyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwabara, I., Maruyama, H., Mikawa, Y. et al. Efficient epitope mapping by bacteriophage λ surface display. Nat Biotechnol 15, 74–78 (1997). https://doi.org/10.1038/nbt0197-74

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0197-74

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing