Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus dodecahedron, a new vector for human gene transfer

Abstract

Recombinant adenovirus is one of most efficient delivery vehicles for gene therapy. However, the initial enthusiasm for the use of recombinant adenovirus for gene therapy has been tempered by strong immune responses that develop to the virus and virus-infected cells. Even though recombinant adeno-viruses are replication-defective, they introduce into the recipient cell, together with the gene of interest, viral genetes that might lead to fortuitous recombination if the recipient is infected by wild-type adenovirus. We propose the use of a dodecahedron made of adenovirus pentons or penton bases as an alternative vector for human gene therapy. The penton is a complex of two oligomeric proteins, a penton base and fiber, involved in the cell attachment, internalization, and liberation of virus into the cytoplasm. The dodecahedron retains many of the advantages of adenovirus for gene transfer such as efficiency of entry, efficient release of DNA from endosomes, and wide range of cell and tissue targets. Because it consists of only one or two adenovirus proteins instead of the 11 contained in an adenovirus virion and it does not contain the viral genome, it is potentially a safer alternative to recombinant adenovirus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Norrby, E. 1969. The structural and functional diversity of adenovirus capsid components. J. Gen. Virol. 5: 221–236.

    Article  CAS  PubMed  Google Scholar 

  2. Philipson L., Lonberg-Holm, K., and Pettersson, U. 1968. Virus-receptor interaction in an adenovirus system. J. Virol. 2: 1064–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Devaux, C., Caillet-Boudin, M.-L., Jacrot, B. and Boulanger, P. 1987. Crystallization, enzymatic cleavage, and polarity of the adenovirus type 2 fiber. Virology 161: 121–128.

    Article  CAS  PubMed  Google Scholar 

  4. Louis, N., Fender, P., Barge, A., Kitts, P. and Chroboczek, J. 1994. Cell-binding domain of adenovirus serotype 2 fiber. J. Virol. 68: 4104–4106.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Henry L., Xia, D., Wilke, M., Deisenhofer, J., and Gerard, R.D. 1994. Characterization of the knob domain of the adenovirus type 5 fibre protein expressed in E. Coli.J. Virol. 48: 5239–5246.

    Google Scholar 

  6. Wickham T., Mathias, P., Cheresh, D.A., and Nemerow G.R. 1993. Integrins avb3 and avb5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  7. Bai, M., Harfe, B. and Freimuth, P. 1993. Mutations that alter an Arg-Gly-Asp (RGD) sequence in adenovirus type 2 penton base protein abolish its cell-round-ing activity and delay virus reproduction in flat cells. J. Virol. 67: 5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. FitzGerald, D.J.P., Padmanabhan, R., Pastan, I. and Wilingham, M.C. 1983. Adenovirus-induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32: 607–617.

    Article  CAS  PubMed  Google Scholar 

  9. FitzGerald, D.J.P., Trowbridge, J.S., Pastan, I., and Wilingham, M.C. 1983. Enhancement of toxicity of antitransferrin receptor antibody-Pseuofomonas exo-toxin conjugates by adenovirus. PNAS 80: 4134–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshimura, K., Rosenfeld, M.A., Seth p., and Crystal, R.G. 1993. Adenovirus-mediated augmentation of cell transfection with unmodified plasmid vectors. J. Biol. Chem. 268: 2300–2303.

    CAS  PubMed  Google Scholar 

  11. Seth, P.J. 1994. Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. Virol. 68: 1204–1206.

    CAS  Google Scholar 

  12. Wohlfart, C. 1988. Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J. Virol. 62: 2321–2328.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, P.L., Burnett, R.M., Cyrklaff, M. and Fuller, S.D. 1991. Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67: 145–154.

    Article  CAS  PubMed  Google Scholar 

  14. Ruigrok, R.W.H., Barge, A., Albiges-Rizo, C. and Dayan, S. 1990. Structure of adenovirus fibre. II. Morphology of single fibres. J. Mol. Biol. 215: 289–596.

    Article  Google Scholar 

  15. Boudin, M.L. and Boulanger P., 1982. Assembly of adenovirus penton base and fibre. Virology 116: 589–604.

    Article  CAS  PubMed  Google Scholar 

  16. Caillet-Boudin, M.-L. 1989. Complementary peptide sequences in partner proteins of the adenovirus capsid. J. Mol. Biol. 208: 195–198.

    Article  CAS  PubMed  Google Scholar 

  17. Hong, S.S. and Boulanger, P. 1995. Protein ligands of the human adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of wild type and mutant penton capsomers. EMBO J. 14: 4714–4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaudhary, N. and Courvalin, J.-C. 1993. Stepwise reassembly of the nuclear envelope at the end of mitosis. J. Cell Biol. 122: 295–306.

    Article  CAS  PubMed  Google Scholar 

  19. Schoehn, G., Fender, P., Chroboczek, J. and Hewat, E.A. Adenovirus 3 penton dodecahedron exibits structural changes of the base on fiber binding. EMBO J. In press.

  20. Norrby, E. 1964. The relationship between the soluble antigens and the virion of adenovirus type 3. I. Morphological characteristics. Virology 1: 236–248.

    Google Scholar 

  21. Gelderblom, H., Bauer, H., Frank, H. and Wigand, R. 1967. The structure of group II adenoviruses. J. Gen. Virol. 1: 553–560.

    Article  CAS  PubMed  Google Scholar 

  22. Norrby, E. and Skaaret P. 1968.Comparison between soluble components of adenovirus types 3 and 16 and of intemediate strain 3-16 (the San Carlos agent). Virology 36: 201–211.

    Article  CAS  PubMed  Google Scholar 

  23. Boulanger, P.A. and Puvion, F. 1976. Occurrence of a peculiar type of adenovirus 2 penton oligomer. Intervirol. 7: 126–134.

    Article  CAS  Google Scholar 

  24. Karayan, L., Gay, B., Gerfaux, J. and Boulanger R. 1994. Oligomerization of recombinant penton base of adenovirus type 2 and its assembly with fibre in baculovirus-infected cells. Virology 202: 782–796.

    Article  CAS  PubMed  Google Scholar 

  25. Van Oostrum, J. and Burnett, R.M. 1985. Molecular composition of the adenovirus type 2 virion. J. Virol. 56: 439–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chardonnet, Y. and Dales, S. 1970. Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40: 462–477.

    Article  CAS  PubMed  Google Scholar 

  27. Lyon, M., Chardonnet, Y., and Dales, S. 1978. Early events in the interaction of adenoviruses with HeLa cells. V. Polypeptide associated with the penetrating inoculum. Virology 87: 81–88.

    Article  CAS  PubMed  Google Scholar 

  28. Greber, U.F., Willetts, M., Webster, P. and Helenius, A. 1993. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  29. Greber, U.F., Webster, P., Weber, J. and Helenius, A. 1996. The role of adenovirus protease in virus entry into cells. EMBO J. 15: 1766–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horwitz, M.S. 1990. Adenoviridae and their replication, pp. 1679–1721 in Virology Fields, B.N. and Knipe, D.M. (eds.). Raven Press, New York.

  31. Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.-H., Chan, S. and Caskey, C.T. 1996. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full length dystrophin and (β-galac-tosidase. Proc. Natl. Acad. Sci. USA 93: 5731–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y., Li, Q., Ertl, H.C.J., and Wilson, J.M. 1995. Cellular and humoral immune response to viral antigens create barriers to lung-directed gene therapy with recombinanat adenoviruses. J. Virol. 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Petterson, U. and Sambrook, J. 1973. Amount of viral DNA in the genome of cells transformed by adenovirus type 2. J. Mol. Biol. 73: 125–130.

    Article  Google Scholar 

  34. Cuzange, A., Chroboczek, J. and Jacrot, B. 1994. The penton base of human adenovirus type 3 has the RGD motif. Gene 146: 257–259.

    Article  CAS  PubMed  Google Scholar 

  35. Signäs, C., Akusjärvi, G. and Pettersson, U. 1985. Adenovirus 3 fibre polypep-tide gene: implications for the structure of the fibre protein. J. Virol. 53: 672–678.

    PubMed  PubMed Central  Google Scholar 

  36. Kitts, P.A., Ayres, M.D. and Possee, R.D. 1990. Linearisation of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acid Res. 18: 5667–5672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. King, L.A. and Possee, R.D. 1992. The baculovirus expression system: a laboratory guide. Chapman & Hall, London.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fender, P., Ruigrok, R., Gout, E. et al. Adenovirus dodecahedron, a new vector for human gene transfer. Nat Biotechnol 15, 52–56 (1997). https://doi.org/10.1038/nbt0197-52

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0197-52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing