Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies

Abstract

The muscular weakness and fatigability associated with myasthenia gravis are engendered by autoantibodies directed against acetylcholine receptors on muscle cells at neuromuscular junctions. The pathogenic consequences of this immune response can potentially be modulated by molecules that bind such autoantibodies and block their interaction with these receptors. We report the isolation of a small nuclease-resistant RNA molecule that binds both a rat monoclonal antibody that recognizes the main immunogenic region on the acetylcholine receptor, and autoantibodies from patients with myasthenia gravis. Moreover, this RNA can act as a decoy and protect acetylcholine receptors on human cells from the effects of these antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindstrom, J., Shelton, D., and Fujii, Y. 1988. Myasthenia gravis. Adv. Immunol. 42: 233–284.

    Article  CAS  Google Scholar 

  2. Wilcox, N. 1993. Myasthenia gravis. Curr. Opin. Immunol. 5: 910–917.

    Article  Google Scholar 

  3. Drachman, D.B. 1994. Myasthenia gravis. N. Engl. J. Med. 330: 1797–1810.

    Article  CAS  Google Scholar 

  4. Patrick, J. and Lindstrom, J.M. 1973. Autoimmune response to acetylcholine receptor. Science 180: 871–872.

    Article  CAS  Google Scholar 

  5. Fambrough, D.M., Drachman, D.B., and Satiamurti, S. 1973. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182: 293–295.

    Article  CAS  Google Scholar 

  6. Tzartos, S.J., Rand, D.E., Einarson, B.L., and Lindstrom, J.M. 1981. Mapping of surface structures of electrophorous acetylcholine receptor using monoclonal antibodies. J. Biol. Chem. 256: 8635–8645.

    CAS  PubMed  Google Scholar 

  7. Tzartos, S.J., Seybold, M.E., and Lindstrom, J.M. 1982. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79: 188–192.

    Article  CAS  Google Scholar 

  8. Sullenger, B.A., Gallardo, H.F., Lingers, G.E., and Gilboa, E. 1990. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus repli-cation. Cell 63: 601–608.

    Article  CAS  Google Scholar 

  9. Sullenger, B.A., Gallardo, H.F., Lingers, G.E., and Gilboa, E. 1991. Analysis of TAR decoy RNA mediated inhibition of HIV-1 transactivation. J. Virol. 65: 6811–6816.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lisziewicz, J., Rappaport, J., and Dhar, R. 1991. Tat-regulated production of multimerized TAR RNA inhibits HIV-1 gene expression. New Biol. 3: 82–89.

    CAS  PubMed  Google Scholar 

  11. Lee, S.-W., Gallardo, H.F., Gilboa, E., and Smith, C. 1994. Inhibition of HIV-1 in human T-cells by a potent RRE decoy comprised of the 13 nucleotide-long minimal rev binding domain. J. Virol. 68: 8254–8264.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, S.-W., Gallardo, H.F., Gasper, O., Smith, C., and Gilboa, E. 1995. Inhibition of HIV-1 in GEM cells by a potent TAR decoy. Gene Ther. 2: 377–384.

    CAS  PubMed  Google Scholar 

  13. Gold, L., Alien, P., Binkley, J., Brown, D., Schneider, D., Eddy, S.R. et al. 1993. RNA: the shape of things to come, pp. 497–510 in The RNA world. Gestelend, R.F. and Atkins, J. F. (eds.). Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  14. Gold, L., Polisky, B., Uhlenbeck, O.C., and Yarus, M. 1995. Diversity of oligo-nucleotide functions. Annu. Rev. Biochem. 64: 763–795.

    Article  CAS  Google Scholar 

  15. Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510.

    Article  CAS  Google Scholar 

  16. Joyce, G.F., 1989. Amplification, mutation and deletion of catalytic RNA. Gene 82: 83–87.

    Article  CAS  Google Scholar 

  17. Szostak, J.W. 1992. In vitro genetics. Trends Biochem. Sci. 17: 89–93.

    Article  CAS  Google Scholar 

  18. Tsai, D.E., Kenan, D.J., and Keene, J.D. 1992. In vitro selection of an RNA epitope immunologically cross-reactive with a peptide. Proc. Natl. Acad. Sci. USA 89: 8864–8868.

    Article  CAS  Google Scholar 

  19. Doudna, J.A., Cech, T.R., and Sullenger, B.A. 1995. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc. Natl. Acad. Sci. USA 92: 2355–2359.

    Article  CAS  Google Scholar 

  20. Lee, S.-W. and Sullenger, B.A. 1996. Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes. J. Exp. Med. 184: 315–324.

    Article  CAS  Google Scholar 

  21. Saedi, M.S., Anand, R., Conroy, W.G., and Lindstrom, J.M. 1990. Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett. 267: 55–59.

    Article  CAS  Google Scholar 

  22. Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H., and Eckstein, F. 1991. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253: 314–317.

    Article  CAS  Google Scholar 

  23. Jellinek, D., Green, L.S., Bell, C., Lynott, C.K., Gill, N., Vargeese, C. et al. 1995. Potent 2′amino-2′deoxy RNA inhibitors of basic fibroblast growth factor. Biochemistry 34: 11363–11372.

    Article  CAS  Google Scholar 

  24. Sophianos, D. and Tzartos, S. 1989. Fab fragments of monoclonal antibodies pro-tect the human acetylcholine receptor against antigenic modulation caused by myasthenia gravis. J. Autoimmun. 2: 777–789.

    Article  CAS  Google Scholar 

  25. Mamalaki, A., Trakas, N., and Tzartos, S.J. 1993. Bacterial expression of a single-chain Fv fragment which efficiently protects the acetylcholine receptor against antigenic modulation caused by myasthenic antibodies. Eur. J. Immunol. 23: 1839–1845.

    Article  CAS  Google Scholar 

  26. Stanley, E.F. and Drachman, D.B. 1978. Effect of myasthenic immunoglobulin of acetylcholine receptors of intact mammalian neuromuscular junctions. Science 200: 1285–1287.

    Article  CAS  Google Scholar 

  27. Kao, I. and Drachman, D.B. 1977. Myasthenic immunoglobulin accelerates acetylcholine receptor degradation. Science 196: 527–529.

    Article  CAS  Google Scholar 

  28. Heineman, S., Beven, S., Kullberg, R., Lindstrom, J.M., and Rice, J. 1977. Modulation of acetylcholine receptor by antibody against the receptor. Proc. Natl. Acad. Sci. USA 74: 3090–3094.

    Article  Google Scholar 

  29. Drachman, D.B., Adams, R.N., Josifek, L.F., and Self, S.G. 1982. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N. Engl. J. Med. 307: 769–775.

    Article  CAS  Google Scholar 

  30. Jaeger, J., Turner, D., and Zuker, M. 1989. Improved predictions of secondary structures for RNA. Proc. Natl. Acad. Sci. USA 86: 7706–7710.

    Article  CAS  Google Scholar 

  31. Vincent, A., Whiting, P.J., Schluep, M., Heidenreich, F., Lang, B., Roberts, A., et al. 1987. Antibody heterogeneity and specificity in myasthenia gravis. Ann. N.Y. Acad. Sci. 505: 106–120.

    Article  CAS  Google Scholar 

  32. Lennon, V.A., Lambert, E.H., Leiby, K.R., Okarma, T.B., and Talib, S. 1991. Recombinant human acetylcholine receptor α-subunit induces chronic experimental autoimmune myasthenia gravis. J. Immunol. 146: 2245–2248.

    CAS  PubMed  Google Scholar 

  33. Stratton, M.R., Darling, J., Pikington, G.J., Lantos, P.L., Reeves, B.R., and Cooper, C.S. 1989. Characterization of the human cell line TE671. Carcinogenesis 10: 899–905.

    Article  CAS  Google Scholar 

  34. Luther, M.A., Schoepfer, R., Whiting, R., Casey, B., Blatt, Y., Montal, M.S., Montal, M., et al. 1989. A muscle acetylcholine receptor is expressed in the human cere-bellar medulloblastoma cell line TE671. J. Neurosci. 9: 1082–1096.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Sullenger, B. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat Biotechnol 15, 41–45 (1997). https://doi.org/10.1038/nbt0197-41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0197-41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing