Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Production of Cephalosporin Intermediates by Feeding Adipic Acid to Recombinant Penicillium chrysogenum Strains Expressing Ring Expansion Activity

We demonstrate a novel and efficient bioprocess for production of the cephalosporin intermediates, 7-aminocephalosporank acid (7-ACA) or 7-amino deacetoxycephalosporanic acid (7-ADCA). The Streptomyces clavuligerus expandase gene or the Cephalosporium acremonium expandase-hydroxylase gene, with and without the acetyltransferase gene, were expressed in a penicillin production strain of Penicillium chrysogenum. Growth of these transformants in media containing adipic acid as the side chain precursor resulted in efficient production of cephalosporins having an adipyl side chain, proving that adipyl-6-APA is a substrate for either enzyme in vivo. Strains expressing expandase produced adipyl-7-ADCA, whereas strains expressing expandase-hydroxylase produced both adipyl-7-ADCA and adipyl-7-ADAC (aminodeace-tylcephalosporanic acid). Strains expressing expandase-hydroxylase and acetyltransferase produced adipyl-7-ADCA, adipyl-7-ADAC and adipyl-7-ACA. The adipyl side chain of these cephalosporins was easily removed with a Pseudomonas-derived amidase to yield the cephalosporin intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Matsumoto, K. 1993. Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidases, p. 67–88. In: Industrial Application of Immobilized Biocatalysts. Tanaka, A., Ibsa, T. and Kobayashi, T. (Eds.). Marcel Dekker, Inc., NY.

    Google Scholar 

  2. Cantwell, C.A., Beckmann, R.J., Dotzlaf, J.E., Fisher, D.L., Skatrud, P.L., Yeh, W.-K. and Queener, S.W. 1990. Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Curr. Genet. 17: 213–221.

    Article  CAS  Google Scholar 

  3. Baldwin, J.E., Adlington, R.M., Coates, J.B., Crabbe, M.J., Crouch, N.P., Keeping, J.W., Knight, G.C., Schofield, C.J., Ting, H.-H., Vallejo, C.A., Thorniley, M. and Abraham, E.P. 1987. Purification and initial characterization of an enzyme with deacetoxycephalosporin C synthetase and hydroxylase activities. Biochem. J. 245: 831–841.

    Article  CAS  Google Scholar 

  4. Dotzlaf, J.E. and Yeh, W.-K. 1989. Purification and properties of deacetoxy cephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J. Biol. Chem. 264: 10219–10227.

    CAS  PubMed  Google Scholar 

  5. Cantwell, C.A., Beckmann, R., Whiteman, P., Queener, S.W. and Abraham, E.P. 1992. Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc. Royal Soc. London B 238: 283–289.

    Google Scholar 

  6. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Ono, H., Ishitani, Y., Kojo, H., Kohsaka, M., Ueda, Y. and Imanaka, H. 1992. Comparative characterization of new glutaryl 7-ACA and cephalosporin C acylases. J. Ferment. Bioeng. 73: 185–192.

    Article  CAS  Google Scholar 

  7. Ballio, A., Chain, E.B., di Accadia, F.D., Mastropietro-Cancellieri, M.F., Morpurgo, G., Serlupi-Crescenzi, G. and Sermonti, G. 1960. Incorporation of α, Ω-dicarboxylic acids as side-chains into the penicillin molecule. Nature 185: 97–99.

    Article  CAS  Google Scholar 

  8. Baldwin, J.E., Adlington, R.M., Crabbe, M.J., Knight, G., Nomoto, T., Schofield, C.J. and Ting, H.H. 1987. The enzymatic ring expansion of penicillins to cephalosporins: side chain specificity. Tetrahedron 43: 3009–3014.

    Article  CAS  Google Scholar 

  9. Kupka, J., Shen, Y.-Q., Wolfe, S. and Demain, A.L. 1983. Partial purification and properties of the α-ketoglutarate-linked ring-expansion enzyme of β-lactam biosynthesis of Cephalosporium acremonium. FEMS Microbiol. Lett. 16 1–6.

    CAS  Google Scholar 

  10. Yeh, W.-K., Dotzlaf, J.E. and Huffman, G.W. 1994. Biochemical characterization and evolutionary implication of β-lactam expandase/hydroxylase, expandase and hydroxylase, p. 208–223. In: 50 Years of Penicillin Application; History and Trends. Kleikauf, H. and von Dohren. H. (Eds.). Public, Prague.

    Google Scholar 

  11. Maeda, K., Luengo, J.M., Ferrero, O., Wolfe, S., Lebedev, M.Y., Fang, A. and Demain, A.L. 1994. The substrate specificity of deacetoxycephalosporin C synthase (“expandase”) of Streptomyces clavuligerus is extremely narrow. Enz. Microb. Technol. In press

  12. Gatignol, A., Dassain, M. and Tiraby, G. 1990. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91: 35–41.

    Article  CAS  Google Scholar 

  13. Lein, J. 1983. The Panlabs penicillin strain improvement program, p. 105–139. In: Overproduction of Microbial Metabolites. Vanek, Z. and Hostalek, Z. (Eds.). Butterworths, Boston.

    Google Scholar 

  14. Matsuda, A., Matsuyama, K., Yamamoto, K., Ichikawa, S. and Komatsu, K.-I. 1987. Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bact. 169: 5815–5820.

    Article  CAS  Google Scholar 

  15. Shibuya, Y., Matsumoto, K. and Fujii, T. 1981. Isolation and properties of 7β-(4-carboxybutanamido) cephalosporanic acid acylase-producing bacteria. Agric. Biol. Chem. 45: l561 1567.

    Google Scholar 

  16. Alonso, M.J., Bermejo, F., Reglero, A., Fernandez-Canon, J.M., Gonzalez de Buitrago, G. and Luengo, J.M. 1988. Enzymatic synthesis of penicillins. J. Antibiot. 41: 1074–1084.

    Article  CAS  Google Scholar 

  17. Kupka, J., Shen, Y.-Q., Wolfe, S. and Demain, A.L. 1983. Studies on the ring-cyclization and ring-expansion enzymes of β-lactam biosynthesis in Cephalosporium acremonium. Can. J. Microbiol. 29: 488–496.

    Article  CAS  Google Scholar 

  18. Zhang, J., Wolfe, S. and Demain, A.L. 1992. Biochemical studies on the activity of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Biochem. J. 283: 691–698.

    Article  CAS  Google Scholar 

  19. Mathison, L., Soliday, C., Stepan, T., Aldrich, T. and Rambosek, J. 1993. Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr. Genet. 23: 33–41.

    Article  CAS  Google Scholar 

  20. Gutierrez, S., Diez, B., Alvarez, E., Barredo, J.L. and Martin, J.F. 1991. Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Mol. Gen. Genet. 225: 56–64.

    Article  CAS  Google Scholar 

  21. Smith, D.J., Bull, J.H., Edwards, J. and Turner, G. 1989. Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol. Gen. Genet. 216: 492–497.

    Article  CAS  Google Scholar 

  22. Barredo, J.L., Diez, B., Alvarez, E. and Martin, J.F. 1989. Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum. Curr. Genet. 16: 453–459.

    Article  CAS  Google Scholar 

  23. Carr, L.G., Skatrud, P.L., Scheetz, M.E., Queener, S.W. and Ingolia, T.D. 1986. Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257–266.

    Article  CAS  Google Scholar 

  24. Kovacevik, S., Weigel, B.J., Tobin, M.B., Ingolia, T.D. and Miller, J.R. 1989. Cloning, characterization and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase. J. Bact. 171: 754–760.

    Article  Google Scholar 

  25. Samson, S.M., Dotzlaf, J.E., Slisz, M.L., Becker, G.W., VanFrank, R.M., Veal, L.E., Yeh, W.-K., Miller, J.R., Queener, S.W. and Ingolia, T.D. 1987. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Technology 5: 1207–1214.

    CAS  Google Scholar 

  26. McAda, P.C. and Douglas, M.G. 1983. A yeast mitochondrial chelator-sensitive protease that processes cytoplasmically synthesized protein precursors: isolation from yeast and assay. Methods Enzymol. 97: 337–343.

    Article  CAS  Google Scholar 

  27. Sambrook, J.E., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press.

    Google Scholar 

  28. Baldwin, J.E., Adlington, R.M., Crouch, N.P., Schofield, C.J., Turner, N.J. and Aplin, R.T. 1991. Cephalosporin biosynthesis: a branched pathway sensitive to an isotope effect. Tetrahedron 47: 9881–9900.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, L., Stepan, A., McAda, P. et al. Production of Cephalosporin Intermediates by Feeding Adipic Acid to Recombinant Penicillium chrysogenum Strains Expressing Ring Expansion Activity. Nat Biotechnol 13, 58–62 (1995). https://doi.org/10.1038/nbt0195-58

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0195-58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing