Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Spin Filter Perfusion System for High Density Cell Culture: Production of Recombinant Urinary Type Plasminogen Activator in CHO Cells

Abstract

We have used a 20 liter stirred tank fermentor, equipped with a 127 mesh ethylene-tetraflouroethylene rotating screen for cell recycle, for the continuous production of recombinant single chain urokinase-type plasminogen activator (rscu-PA) from Chinese hamster ovary (CHO) cells. Viable cell densities between 60 and 74 million per ml were maintained at medium perfusion rates of 3.0 to 4.0 fermentor volumes per day. Cells were retained by the 120 micron nominal opening filter through the formation of “clumped” cell aggregates of 200 to 600 μm in size, which did not foul the filter. In 31 days of culture, a total of 51 grams of rscu-PA were produced in 1,000 liters of medium. The rscu-PA produced over the course of this continuous culture was purified and characterized both in vitro and in vivo and shown to be comparable to natural scu-PA produced from the transformed human kidney cell line, TCL-598.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scahill, S.J., Devos, R., Heyden, J.V. and Fiers, W. 1983. Expression and characterization of the product of a human interferon cDNA gene in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U.S.A. 80: 4654–4658.

    Article  CAS  Google Scholar 

  2. Haynes, J. and Weissman, C. 1983. Constitutive, long term production of human interferons by hamster cells containing multiple copies of a cloned interferon gene. Nucleic Acids Res. 11: 687–706.

    Article  CAS  Google Scholar 

  3. McCormick, F., Trahey, M., Innis, M., Dieckmann, B. and Ringold, G. 1984. Inducible expression of amplified human beta interferon genes in CHO cells. Mol. Cell. Biol. 4: 166–172.

    Article  CAS  Google Scholar 

  4. Kaufman, R.J., Wasley, L.C., Dorner, A.J. 1988. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J. Biol. Chem. 263: 6352–6362.

    CAS  PubMed  Google Scholar 

  5. Kaufman, R.J., Wasley, L.C., Spiliotes, A.J., Gossels, S.D., Latt, S.A., Larsen, G.R. and Kay, R.M. 1985. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 5: 1750–1759.

    Article  CAS  Google Scholar 

  6. Kaufman, R. and Sharp, P. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene. J. Mol. Biol. 159: 601–621.

    Article  CAS  Google Scholar 

  7. Runstadler, P.W. and Cernek, S.R. Large-scale fluidized-bed, immobilized cultivation of animal cells at high densities, p. 305–320. 1988. In: Animal Cell Biotechnology Vol. 3. R. E. Spier and J. B. Griffiths (Eds.). Academic Press, NY.

    Google Scholar 

  8. Tyo, M.A., Bulbulian, B.J., Menken, B.Z. and Murphy, T.J. Large-scale mammalian cell culture utilizing ACUSYST technology, p. 357–371. 1988. Ibid.

    Google Scholar 

  9. Tolbert, W.R., Srigley, W.R. and Prior, C.P. Perfusion culture systems for large-scale pharmaceutical production, 357–371. 1988. Ibid.

    Google Scholar 

  10. Brennan, A.J., Shevitz, J., Macmillan, J.D. 1987. A perfusion system for antibody production by shear sensitive hybridoma cells in a stirred reactor. Biotechnol Tech. 1: 169–174.

    Article  CAS  Google Scholar 

  11. Berg, G.J. and Bödeker, B.G.D. Employing a ceramic matrix for the immobilization of animal cells in culture, p. 322–335. 1988. Animal Cell Biotechnology, op cit.

    Google Scholar 

  12. Brown, P.C., Figueroa, C., Costello, M.A.C., Oakley, R. and Maciukas, S.M., Protein production from mammalian cells grown in glass beads, p. 251–262. 1988. Ibid.

    Google Scholar 

  13. Himmelfarb, P., Thayer, P.S. and Martin, H.E. 1969. Spin filter culture: the propagation of mammalian cells in suspension. Science 164: 555–557.

    Article  CAS  Google Scholar 

  14. Tolbert, W.R., Feder, J. and Kimes, R.S. 1981. Large scale rotating filter perfusion system for high density growth of mammalian suspension cultures. In Vitro 17: 885–890.

    Article  CAS  Google Scholar 

  15. Feder, J. and Tolbert, W.R. 1985. Mass culture of mammalian cells in perfusion systems. Amer Biotech. Lab. Jan/Feb: 24–36.

  16. Reuveny, S., Velez, D., Miller, L. and Macmillan, J.D. 1985. Comparison of cell propagation methods for their effect on monoclonal antibody yield of fermentors. J. Immunol. Methods 86: 61–69.

    Article  Google Scholar 

  17. Van Wezel, A.L. van der Velden-de Groot, C.A.M., de Haan, J.J., van den Heuval, N. and Schasfoort, R. 1985. Large scale animal cell cultivation for production of cellular biologicals. Dev. Biol. Stand. 60: 229–236.

    CAS  PubMed  Google Scholar 

  18. Varecka, R. and Scheirer, W. 1987. Use of a rotating wire cage for retention of animal cells in a perfusion fermentor. Dev. Biol. Stand. 66: 269–272.

    CAS  PubMed  Google Scholar 

  19. Scheirer, W. High-density growth of animal cells within cell retention fermentors equipped with membranes, p 263–281. 1988. Animal Cell Biotechnology, op cit.

    Google Scholar 

  20. Avgerinos, G.C. and Drapeau, D. 1988. Production scale mammalian cell suspension perfusion culture with a rotating wire mesh sieve, p. f6. In: Abstracts of Engineering Foundation Conference on Cell Culture Engineering. Jan 31, 1988. Palm Coast, Florida.

    Google Scholar 

  21. Omitted in proof.

  22. Griffiths, J.B., Atkinson, A., Electricwala, A., Later, A., McEntee, I., Riley, P.A. and Sutton, P.M. 1984. Production of a fibrinolytic enzyme from cultures of guinea pig keratocytes grown on microcarriers. Dev. Biol. Stand. 55: 31–36.

    Google Scholar 

  23. Feder, J. and Tolbert, W.R. 1983. The large-scale cultivation of mammalian cells. Sci. Amer. 248: 36–43.

    Article  CAS  Google Scholar 

  24. Reuveny, S., Zheng, Z.-B., Eppstein, L. 1986. Evaluation of a cell culture fermenter. Am. Biotech. Lab. Jan./Feb. 28–36.

  25. Rijken, D.D. and Collen, D. 1981. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J. Biol. Chem. 256: 7035–7041.

    CAS  Google Scholar 

  26. Grinnel, F., Milan, M., Spere, P.A. 1973. Attachment of neoplastic and transformed hamster kidney cells to substrata of varying chemical composition. Biochem. Med. 7: 87–90.

    Article  Google Scholar 

  27. Kohno, T., Hopper, P., Lillquist, J., Suddith, R.L., Greenlee, R. and Moir, D.T. 1984. Kidney plasminogen activator: A precursor form of human urokinase with high fibrin affinity. Bio/Technology 2: 628–634.

    CAS  Google Scholar 

  28. Holmes, W.E., Pennica, D., Blaber, M., Rey, M.W., Guenzler, W.A., Steffens, G.J., Heyneker, H.L. 1985. Cloning and expression of the gene for pro-urokinase in Escherichia coli. Bio/Technology 3: 923–929.

    Article  CAS  Google Scholar 

  29. Gurewich, V., Pannell, R., Louie, S., Kelley, P., Suddith, R.L. and Greenlee, R. 1984. Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (Pro-urokinase). J. Clin. Invest. 73: 1731–1739.

    Article  CAS  Google Scholar 

  30. Broeze, R.J., Mao, J., Fry, E., Fujii, S., Sobel, B., Socolow, J., Abercrombie, D., Buchinski, B., Hsiao, K., Stump, D. and Vovis, G. 1988. Biological characterization of fully glycosylated recombinant scu-PA. Fibrinolysis Abstracts 2(1): 65.

    Article  Google Scholar 

  31. Fry, E.T.A., Fujii, S., Mack, D.L., Broeze, R.J., Vovis, G.F., Stump, D.C. and Sobel, B.E. 1988. Coronary thrombolysis induced with recombinant scu-PA from mammalian cells and yeast. Circulation Supp. 78(4): II–230.

    Google Scholar 

  32. Gurewich, V., Pannell, R., Broeze, R.J. and Mao, J. 1988. Characterization of the intrinsic fibrinolytic properties of pro-urokinase through a study of plasmin-resistant mutant forms produced by site-specific mutagenesis of lysine158. J. Clin. Invest. 82: 1956–1962.

    Article  CAS  Google Scholar 

  33. Amador, E., Dorfman, L.E. and Wacker, W.E.C. 1963. Serum lactic acid dehydrogenase: an analytical assessment of current assays. Clin. Chem. 9: 391.

    CAS  Google Scholar 

  34. Beuding, E. and MacKinnon, J.A. 1955. Studies of the phosphohex-ose isomerase of Schistosoma mansoni. J. Biol. Chem. 215: 507.

    Google Scholar 

  35. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  36. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurements with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avgerinos, G., Drapeau, D., Socolow, J. et al. Spin Filter Perfusion System for High Density Cell Culture: Production of Recombinant Urinary Type Plasminogen Activator in CHO Cells. Nat Biotechnol 8, 54–58 (1990). https://doi.org/10.1038/nbt0190-54

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0190-54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing