Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Use of the Escherichia coli ssb Gene to Prevent Bioreactor Takeover by Plasmidless Cells

Abstract

Reactor takeover by plasmidless cells is a major problem encountered when producing proteins from plasmid-borne genes in genetically engineered bacteria. We have approached this problem by deleting the essential ssb gene from the Escherichia coli chromosome and placing it on a plasmid. Plasmidless cells do not accumulate even after growing such strains under non-selective continuous culture conditions for extended periods of time. Other ssb-containing plasmids can be readily introduced into this E. coli strain by a plasmid-displacement technique. Using this system, we have achieved very high levels of β-lactamase production in continuous culture without selective pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Imanaka, T. and Aiba, S. 1981. A perspective on the application of genetic engineering: stability of recombinant plasmid. Annals New York Academy of Sciences 369: 1–14.

    Article  CAS  Google Scholar 

  2. Meacock, P.A. and Cohen, S.N. 1980. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell 20: 529–542

    Article  CAS  Google Scholar 

  3. Skogman, G., Nilsson, J. and Gustafsson, P. 1983. The use of a partition locus to increase stability of tryptophan-operon bearing plasmids in Escherichia coli. Gene 23: 105–115.

    Article  CAS  Google Scholar 

  4. Gerdes, K., 1988. parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system. Bio Technology 6: 1402–1405.

    CAS  Google Scholar 

  5. Kim, S.H. and Ryu, D.D.Y. 1984. Instability kinetics of trp operon plasmid colEq-trp in recombinant Escherichia coli MV12[pVH5] and MV12trpR[pVH5]. Biotechnology and Bioengineering 26: 497–502.

    Article  CAS  Google Scholar 

  6. Dwivedi, C.P., Imanaka, T. and Aiba, S. 1982. Instability of plasmid-harboring strain of E. coli in continuous culture. Biotechnology and Bioengineering 24: 1465–1468.

    Article  CAS  Google Scholar 

  7. Lee, S.B., Ryu, D.D., Seigel, R. and Park, S.H. 1988. Performance of recombinant fermentation and evaluation of gene expression efficiency for gene product in two-stage continuous culture system. Biotechnology and Bioengineering 31: 805–820.

    Article  CAS  Google Scholar 

  8. Glassberg, J.R., Meyer, R. and Kornberg, A. 1979. Mutant single-strand binding protein of Escherichia coli: genetic and physiological characterization. J. Bacteriol. 140: 14–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Manis, J.J. and Kline, B. 1977. Restriction endonuclease mapping and mutagenesis of the F sex factor replication region. Mol. Gen. Genet. 152: 175–182.

    Article  CAS  Google Scholar 

  10. DeLucia, P. and Cairns, J. 1969. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature 224: 1164–1166.

    Article  CAS  Google Scholar 

  11. Bachmann, B.J. 1972. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36: 525–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  Google Scholar 

  13. Chambers, S.P., Prior, S.E., Barstow, D.A. and Minton, N.P. 1988. The pMTLnic-cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68: 139–149.

    Article  CAS  Google Scholar 

  14. Georgiou, G., Chalmers, J.J. and Shuler, M.L. 1985. Continuous immobilized recombinant protein production from E. coli capable of selective protein excretion: a feasibility study. Biotechnology Progress 1: 75–79.

    Article  CAS  Google Scholar 

  15. Summers, D.K. and Sherratt, D.J. 1984. Multimerization of high copy number plasmids causes instability:Col E1 encodes a determinant essential for plasmid monomerization and stability. Cell 36: 1097–1103.

    Article  CAS  Google Scholar 

  16. Summers, D., Yaish, S., Archer, J. and Sherratt, D. 1985. Multimer resolution systems of Col E1 and Col K: localization of the crossover site. Mol. Gen. Genet. 202: 334–338.

    Article  Google Scholar 

  17. Hakkaart, M.J.J., Van den Ellzen, P.J.M., Veltkamp, E. and Nikjamp, H.J.J. 1984. Maintenance of multicopy plasmid Clo DF13 in E. coli cells: evidence for site-specific recombination at parB. Cell 36: 203–209.

    Article  CAS  Google Scholar 

  18. Tucker, W.T., Miller, C.A. and Cohen, S.N. 1984. Structural and functional analysis of the par region of the pSC101 plasmid. Cell 38: 191–201.

    Article  CAS  Google Scholar 

  19. Austin, S. and Abeles, A. 1983. Partition of unit-copy miniplasmid to daughter cells. II. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J. Mol. Biol. 169: 373–387.

    Article  CAS  Google Scholar 

  20. Funnell, B.E. 1988. Mini-P1 plasmid partitioning: excess parB protein destabilizes plasmids containing the centromere parS. J. Bacteriol. 170: 954–960.

    Article  CAS  Google Scholar 

  21. Gerdes, K., Larsen, J.E.L. and Molin, S. 1985. Stable inheritance of plasmid R1 requires two different loci. J Bacteriol. 161: 292–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerdes, K., Rasmussen, P.B. and Molin, S. 1986. Unique type of plasmid maintenance function: postsegregational killing of plasmid free cells. Proc. Natl. Acad. Sci. USA 83: 3116–3120.

    Article  CAS  Google Scholar 

  23. Rasmussen, P.B., Gerdes, K. and Molin, S. 1987. Genetic analysis of the parB locus of plasmid R1. Mol. Gen. Genet. 209: 122–128.

    Article  CAS  Google Scholar 

  24. Boe, L., Gerdes, K. and Molin, S. 1987. The effects of genes exerting growth inhibition and plasmid maintenance on plasmid stability. J. Bacteriol. 169: 4646–4650.

    Article  CAS  Google Scholar 

  25. Nilsson, J. and Skogman, S.G., 1986. Stabilization of Escherichia coli tryptophan production vectors in continuous cultures: A comparison of three different systems. Bio Technology 4: 901–903.

    Article  CAS  Google Scholar 

  26. Rosteck, P.R., Jr. and Hershberger, C.L. 1983. Selective retention of recombinant plasmids coding for human insulin. Gene 25: 29–38.

    Article  CAS  Google Scholar 

  27. Skogman, S.G. and Nilsson, J. 1984. Temperature-dependent retention of a tryptophan-operon-bearing plasmid in Escherichia coli. Gene 31: 117–122.

    Article  CAS  Google Scholar 

  28. Diderichsen, B. 1986. A genetic system for stabilization of cloned genes in Bacillus subtilis, p. 35–46, In: Bacillus Molecular Genetics and Biotechnology Applications, A. T. Ganesan and J. A. Hoch (Eds). Academic Press, Orlando, FL.

    Chapter  Google Scholar 

  29. Buzby, J.S., Porter, R.D. and Stevens, S.E. Jr. 1983. Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties. J. Bacteriol. 154: 1446–1450.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  31. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acid Res. 7: 1513–1525.

    Article  CAS  Google Scholar 

  32. Kushner, S.R. 1978. An improved method for transformation of E. coli with ColE1-derived plasmids, p. 17. In: Genetic Engineering, H. B. Boyer and S. Nicosia (Eds). Elsevier/North Holland Publishing Co., Amsterdam.

    Google Scholar 

  33. Seifert, H.S. and Porter, R.D. 1984. Enhanced recombination between λplac5 and mini-Flac: the tra regulon is required for recombination enhancement. Mol. Gen. Genet. 193: 269–274.

    Article  CAS  Google Scholar 

  34. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  35. Sancar, A., Williams, K.R., Chase, J.W. and Rupp, W.D. 1981. Sequences of the ssb gene and protein. Proc. Natl. Acad. Sci. USA 78: 4274–4278.

    Article  CAS  Google Scholar 

  36. Georgiou, G, Shuler, M.L. and Wilson, D.B. 1988. Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction in Escherichia coli. Biotechnology and Bioengineering 32: 741–748.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, R., Black, S., Pannuri, S. et al. Use of the Escherichia coli ssb Gene to Prevent Bioreactor Takeover by Plasmidless Cells. Nat Biotechnol 8, 47–51 (1990). https://doi.org/10.1038/nbt0190-47

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0190-47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing