Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Agrobacterium–Mediated Transformation of Rice (Oryza sativa L.)

Abstract

We have transformed embryo-derived cultures of two rice cultivars using several different Agrobacterium-mediated gene transfer systems. Mature embryos of cv. Nipponbare inoculated with the wide host range (WHR) supervirulent strain A281(pTiBo542) formed tumorigenic callus tissue that grew on hormone-free medium. The transformed status of this tissue was confirmed by DNA hybridization analysis that showed transferred DNA (T-DNA) present in the rice genome. Embryos of another variety, cv. Fujisaka 5, gave a hypersensitive response when inoculated with strain A281 but exhibited extensive root proliferation following inoculation with the limited host range (LHR) strain A856. These roots grew on hormone-free medium and produced octopine. Fujisaka 5 embryos subsequently inoculated with a disarmed WHR strain conferring kanamycin resistance and β-D-glucuronidase (GUS) activity produced callus that grew on selective levels of kanamycin and this tissue fluoresced upon incubation with GUS substrate. GUS expression in the rice tissues was confirmed by Western blotting. We conclude that T-DNA has been transferred to, integrated and then expressed in rice cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bytebier, B., Deboeck, F., DeGreve, H., Van Montagu, M. and Hernalsteens J.-P. 1987. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis . Proc. Natl. Acad. Sci. USA 84: 5345–5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hooykaas-Van Slogteren, G.M.S., Hooykaas, P.J.J. and Schilperoort, R. 1984. Expression of Ti-plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens . Nature 311: 763–764.

    Article  CAS  Google Scholar 

  3. Graves, A.C. and Goldman, S.L. 1987. Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of the expression of T-DNA-encoded genes. J. Bacteriol. 169: 1745–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schafer, W., Gorz, A. and Gunter, K. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium . Nature 327: 529–532.

    Article  Google Scholar 

  5. Graves, A.C. and Goldman, S.L. 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens: detection of T-DNA specified enzyme activities. Plant Mol. Biol. 7: 43–50.

    Article  CAS  PubMed  Google Scholar 

  6. Garfinkel, D.J., Simpson, R.B., Ream, L.W., White, F.F., Gordon, M.P. and Nester, E. 1981. Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 413–153.

    Article  Google Scholar 

  7. Hood, E.E., Jen, G., Kayes, L., Kramer, J., Fraley, R.T. and Chilton, M.-D. 1984. Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio Technology 2: 702–709.

    CAS  Google Scholar 

  8. Taylor, B.H., Amasino, R.M., White, F.F., Nester, E.W. and Gordon, M.P. 1985. T-DNA analysis of plants regenerated from hairy root tumors. Mol. Gen. Genet. 201: 554–557.

    Article  CAS  Google Scholar 

  9. Xiang-can Zhan, Jones, D.A. and Kerr, A. 1988. Regeneration of flax plants transformed by Agrobacterium rhizogenes . Plant Mol. Biol. 11: 551–559.

    Article  PubMed  Google Scholar 

  10. Komari, T., Halperin, W. and Nester, E.W. 1986. Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo512. J. Bacteriol. 166: 88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yanofsky, M.F., Lowe, B., Montoya, A., Rubin, R., Krul, W., Gordon, M.P. and Nester, E.W. 1985. Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens . Mol. Gen. Genet. 201: 237–246.

    Article  CAS  Google Scholar 

  12. Spano, L., Mariotti, D., Pezzotti, M., Damiani, F. and Arcioni, S. 1987. Hairy root transformation in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 73: 523–530.

    Article  CAS  PubMed  Google Scholar 

  13. Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, K. and Sugawara, Y. 1986. Expresssion of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.). Mol. Gen. Genet. 204: 204–207.

    Article  CAS  Google Scholar 

  14. Yang, H., Zhang, H.M., Davey, M.R., Mulligan, B.J. and Cocking, E.C. 1988. Production of kanamycin-resistant rice tissues following DNA uptake into protoplasts. Plant Cell Reports 7: 421–425.

    CAS  PubMed  Google Scholar 

  15. De Blaere, R., Bytebier, B., De Greve, H., Deboeck, F., Van Montagu, Schell, J., Van Montagu, M. and Leemans, J. 1985. Efficient octopine Ti-plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13: 4777–1488.

    Article  CAS  Google Scholar 

  16. Deroles, S.C. and Gardner, R.C. 1988. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11: 365–377.

    Article  CAS  PubMed  Google Scholar 

  17. Peerbolte, R., Leenhouts, K., Hooykaas-VanSlogteren, G.M.S., Hoge, J., Wullems, G.J. and Schilperoort, R.A. 1986. Clones from a shooty tobacco crown gall tumor I: deletions, rearrangements and amplifications resulting in irregular T-DNA structures and organizations. Plant Mol. Biol. 7: 265–84

    Article  CAS  PubMed  Google Scholar 

  18. Velton, J. and Schell, J. 1985. Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucleic Acids Res. 13: 6981–6998.

    Article  Google Scholar 

  19. Czernilofsky, A.P., Hain, R., Herrera-Estrella, L., Goyvaerts, E., Baker, B.J. and Schell, J. 1986. Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum . DNA 5: 101–113.

    Article  CAS  PubMed  Google Scholar 

  20. Watson, B., Currier, T.C., Gordon, M.P., Chilton, M.-D. and Nester, E.W. 1975. Plasmid required for virulence of Agrobacterium tumefaciens . J. Bacteriol. 123: 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomashow, M.F., Knauf, V.C. and Nester, E.W. 1981. Relationship between the limited and wide host range octopine-type Ti-plasmids of Agrobacterium tumefaciens . J. Bacteriol. 146: 484–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klee, H.J., Yanofsky, M.F. and Nester, E.W. 1985. Vectors for transformation of higher plants. Bio Technology 3: 637–642.

    CAS  Google Scholar 

  23. Ooms, G., Hooykaas, P.J.J., Moolenaar, G. and Schilperoort, R.A. 1981. Crown gall plant tumors of abnormal morphology induced by Agrobacterium tumefaciens carrying mutated octopine Ti-plasmids: Analysis of T-DNA functions. Gene 14: 33–50.

    Article  CAS  PubMed  Google Scholar 

  24. Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E. and Stalker, D.M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744.

    Article  CAS  Google Scholar 

  25. Jefferson, R.A., Bevan, M. and Kavanagh, T. 1987. The use of the Escherichia coli β-glucuronidase gene as a gene fusion marker for studies of gene expression in higher plants. Biochem. Soc. Transactions 15: 17–18.

    Article  CAS  Google Scholar 

  26. Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiological Reviews 47: 1–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shine, J. and Dalgarno, L. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71: 1342–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chilton, M.-D., Currier, T., Farrand, S., Bendich, A., Gordon, M. and Nester, E. 1974. Agrobacterium DNA and P58 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71: 3672–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Lab., New York.

    Google Scholar 

  30. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. 1980. Broad host range DNA cloning systems for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc. Natl. Acad. Sci. USA 77: 7347–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winans, S.C., Kerstetter, R.A. and Nester, E.W. 1988. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens . J. Bacteriol. 170: 4047–4054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdullah, R., Cocking, E.C. and Thompson, J.A. 1986. Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio Technology 4: 1087–1090.

    Google Scholar 

  33. Murashige, R. and Skoog, F. 1962. A revised method for rapid growth and bioassays with tissue cultures. Plant Physiol. 15: 473–497.

    Article  CAS  Google Scholar 

  34. Linsmaier, E.M. and Skoog, F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  35. Draper, J. and Scott, R., 1988. Transformation and Gene Expression: A Laboratory Manual. Draper, J., Scott, R., Armitage, P. and Walden, R. (Eds.). Blackwell Sci. Publ., Oxford, UK.

    Google Scholar 

  36. Rogers, S.G., Horsch, R.B. and Fraley, R.T. 1986. Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Meth. Enzymol. 118: 627–640.

    Article  CAS  Google Scholar 

  37. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter 5: 387–405.

    Article  CAS  Google Scholar 

  38. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  39. Bjerrum, O.J. and Heegaard, N.H.H. (Eds). 1988. CRC Handbook of Immunoblotting of Proteins, CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  40. Iturriaga, G., Jefferson, R.A. and Bevan, M.W. 1989. Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1: 381–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oberfelder, R. 1989. Immunoblotting:Comparison of Detection Methods. Focus 11: 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineri, D., Bottino, P., Gordon, M. et al. Agrobacterium–Mediated Transformation of Rice (Oryza sativa L.). Nat Biotechnol 8, 33–38 (1990). https://doi.org/10.1038/nbt0190-33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0190-33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing