Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Alkaline Phosphatase Fusions: A Tag to Identify Mutations that Result in Increased Expression of Secreted Human Growth Hormone from Escherichia coli

Abstract

We describe a method for the mutagenesis of a signal sequence, and the identification of mutations leading to the enhanced expression of periplasmicly secreted human growth hormone (HGH) from Escherichia coli. A plasmid was engineered, using deoxyoligonucleotide directed site specific mutagenesis, to contain two unique restriction sites flanking the signal sequence for HGH. The signal was mutagenized specifically using nitrous acid. Mutants resulting in enhanced expression of secreted HGH were detected by expressing and secreting a human growth hormone–alkaline phosphatase fusion protein possessing phosphatase activity. Such fusions show activity only when secreted. The signal sequence mutations isolated were transferred into plasmids directing the expression and secretion of native HGH and the phenotypes of enhanced expression of secreted protein were largely preserved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Casadaban, M.J., Chon, J., and Cohen, N. 1980. In vitro gene fusions that join an enzymaticaily active β-galactosidase segment to amino-terminal fragments of exogenous proteins. J. Bact. 143:971–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Casadaban, M.J. and Cohen, S.N. 1980. Analysis of gene control signals by DNA fusion and cloning in E. coli. J. Mol. Biol. 138:179–207.

    Article  CAS  PubMed  Google Scholar 

  3. Guarente, L., Lauer, G., Roberts, T.M. and Ptashne, M. 1980. Improved methods for maximizing expression of a cloned gene. Cell 20:543–553.

    Article  CAS  PubMed  Google Scholar 

  4. Palva, E.T. and Silhavy, T.J. 1984. LacZ fusions to genes that specify export proteins: a general technique. Mol. Gen. Genet. 194:388–394.

    Article  CAS  PubMed  Google Scholar 

  5. Michaelis, S., Inouye, H., Oliver, D., and Beckwith, J. 1983. Mutations that alter the signal sequence of alkaline phosphatase in E. coli. J. Bacteriol. 154:366–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Inouye, H., Michaelis, S., Wright, A., and Beckwith, J. 1981. Cloning and restriction mapping of the alkaline phosphatase structural gene of E. coli. J. Bacteriol. 146:668–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wright, A., Hoffman, C., and Fishman, Y. 1983. Fusions of secreted proteins to E. coli alkaline phosphatase. J. Cell. Biochem. Supplement 7B:346.

    Google Scholar 

  8. Gray, G.L., Baldridge, J.S., Heyneker, H.L., and Chang, C.N. 1985. Periplasmic production of human growth hormone in E. coli: Interchangeability of natural and bacterial leader peptides. Gene. In press.

  9. Weiher, H. and Schaller, H. 1982. Segment-specific mutagenesis: Extensive mutagenesis of a lac promoter/operator element. Proc. Natl. Acad. Sci. USA 79:1408–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shortle, D., Grisafi, P., Benkovic, S.J., and Botstein, D. 1982. Gap misrepair mutagenesis: Efficient site-directed induction of transition, transversion, and frameshift mutations in vitro. Proc. Natl. Acad. Sci. USA 79:1588–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matteucci, M.D. and Heyneker, H.L. 1983. Targeted random mutagenesis: The use of ambiguously synthesized oligonucleotides to mutagenize sequences immediately 5′ of an ATG initiation codon. Nucleic Acids Research 10:3113–3121.

    Article  Google Scholar 

  12. Warburton, N., Boseley, P.G., and Porter, A.G. 1983. Increased expression of a cloned gene by local mutagenesis of its promoter and ribosome binding site. Nucleic Acids Research 11:5837–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Boer, H.A., Comstock, L.J., Yansura, D.G., and Heyneker, H.L. 1982. Construction of a tandem trp-lac promoter and a hybrid trp-lac promoter for efficient and controlled expression of HGH in E. coli, p. 462–481. In: Promoters: Structure and Function. R. L. Rodriguez and M. J. Chamberlin (eds.) Praeger, New York.

    Google Scholar 

  14. Kikuchi, Y., Yoda, K., Yamasaki, M., and Tamura, G. 1981. The nucleotide sequence of the promoter and the amino-terminal region of alkaline phosphatase structural gene of E. coli. Nucleic Acids Research 9:5671–5678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burnette, W.W. 1981. “Western Blotting”: Electrophoretic transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose. Anal. Biochem. 112:195–203.

    Article  CAS  PubMed  Google Scholar 

  16. Winter, G., Fersht, A.R., Wilkinson, A.J., Zoller, M., and Smith, M. 1982. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 299:756–758.

    Article  CAS  PubMed  Google Scholar 

  17. Adelman, J.P., Hayflick, J.S., Vasser, M., and Seeburg, P.H. 1983. In vitro deletional mutagenesis for bacterial production of the 20,000 dalton form of human pituitary growth hormone. DNA 2:183–193.

    Article  CAS  PubMed  Google Scholar 

  18. Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goeddel, D.V., Heyneker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D.G., Ross, M.J., Miozzari, G., Crea, R., and Seeburg, P.H. 1979. Direct expression in E. coli of a DNA sequence coding for human growth hormone. Nature 281:544–548.

    Article  CAS  PubMed  Google Scholar 

  20. Koshland, D. and Botstein, D. 1980. Secretion of beta-lactamase requires the carboxy end of the protein. Cell 20:749–760.

    Article  CAS  PubMed  Google Scholar 

  21. Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B.S., and Stormo, G. 1981. Translational initiation in prokaryotes. Annual Review of Microbiology.

  22. Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbech, O.C., Crothers, D.M., and Gralla, J. 1973. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246:40–41.

    Article  CAS  PubMed  Google Scholar 

  23. Perlman, D. and Halvorson, H.O. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:391–409.

    Article  CAS  PubMed  Google Scholar 

  24. Marinus, M.G. and Norris, N.R. 1973. Isolation of DNA methylase mutants of E. coli K-12. J. Bacteriol. 114:1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Inouye, H., Pratt, C., Beckwith, J., and Torriani, A. 1977. Alkaline phosphatase synthesis in a cell-free system using DNA templates. J. Mol. Biol. 110:75–87.

    Article  CAS  PubMed  Google Scholar 

  26. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular cloning, A Laboratory Manual, p. 98–147. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  27. Matteucci, M.D. and Caruthers, M.H. 1981. Synthesis of deoxyoligonucleotides on a polymer support. Journal Am. Chem. Soc. 103:3185–3189.

    Article  CAS  Google Scholar 

  28. Beaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Letters 22:1859–1862.

    Article  CAS  Google Scholar 

  29. Brickman, E. and Beckwith, J. 1975. Analysis of the regulation of E. coli alkaline phosphatase synthesis using deletions and ø80 transducing phages. J. Mol. Biol. 96:307–316.

    Article  CAS  PubMed  Google Scholar 

  30. Miller, J.H. 1972. In: Experiments in Molecular Genetics, p. 356–359. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  31. Jones, P.W., Wilson, H.W., and Novick, Jr., W.J. 1982. In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent. J. Clin. Microbiol. 15:677–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoffman, C.S. and Wright, A. 1985. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc. Natl. Acad. Sci. USA 82:5107–5111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matteucci, M., Lipetsky, H. Alkaline Phosphatase Fusions: A Tag to Identify Mutations that Result in Increased Expression of Secreted Human Growth Hormone from Escherichia coli. Nat Biotechnol 4, 51–55 (1986). https://doi.org/10.1038/nbt0186-51

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0186-51

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing