Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine

Abstract

Although anti-tumor immunity is inducible by dendritic cell (DC)–based vaccines, time- and cost-consuming “customizing” processes required for ex vivo DC manipulation have hindered broader clinical applications of this concept. Epidermal Langerhans cells (LCs) migrate to draining lymph nodes and undergo maturational changes on exposure to reactive haptens. We entrapped these migratory LCs by subcutaneous implantation of ethylene–vinyl–acetate (EVA) polymer rods releasing macrophage inflammatory protein (MIP)-3β (to create an artificial gradient of an LC-attracting chemokine) and topical application of hapten (to trigger LC emigration from epidermis). The entrapped LCs were antigen-loaded in situ by co-implantation of the second EVA rods releasing tumor-associated antigens (TAAs). Potent cytotoxic T-lymphocyte (CTL) activities and protective immunity against tumors were induced efficiently with each of three tested TAA preparations. Thus, tumor-specific immunity is inducible by the combination of LC entrapment and in situ LC loading technologies. Our new vaccine strategy requires no ex vivo DC manipulation and thus may provide time and cost savings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A DC-attracting chemokine MIP-3β is released in a controlled fashion from EVA polymer rods.
Figure 2: Implantation of MIP-3β rods causes local accumulation of LCs without affecting their surface densities.
Figure 3: Migratory LCs can be temporally entrapped by MIP-3β rod implantation.
Figure 4: Co-implantation of MIP-3β rods and OVA rods triggers OVA-specific CTL activities.
Figure 5: Co-implantation of MIP-3β rods and OVA rods initiates protective immunity against OVA-transduced tumors.
Figure 6: CTL activities and protective immunity are inducible by in situ LC vaccines with native TAA preparations.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Fong, L. & Engleman, E.G. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18, 245–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Dallal, R.M. & Lotze, M.T. The dendritic cell and human cancer vaccines. Curr. Opin. Immunol. 12, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Grabbe, S. et al. Tumor antigen presentation by murine epidermal cells. J. Immunol. 146, 3656–3661 (1991).

    CAS  PubMed  Google Scholar 

  8. Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M.P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. 183, 317–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Mayordomo, J.I. et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. 1, 1297–1302 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T. & Falo, L.D., Jr., Peptide- pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J. Exp. Med. 183, 283–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192, 1535–1544 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jenne, L., Arrighi, J.F., Jonuleit, H., Saurat, J.H. & Hauser, C. Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 60, 4446–4452 (2000).

    CAS  PubMed  Google Scholar 

  13. Russo, V. et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc. Natl. Acad. Sci. USA 97, 2185–2190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albert, M.L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, W. et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J. Exp. Med. 186, 1247–1256 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Specht, J.M. et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. J. Exp. Med. 186, 1213–1221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boczkowski, D., Nair, S.K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Gong, J., Chen, D., Kashiwaba, M. & Kufe, D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med. 3, 558–561 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Nair, S.K. et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat. Med. 6, 1011–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4, 328–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids. Nat. Med. 6, 332–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Lodge, P.A., Jones, L.A., Bader, R.A., Murphy, G.P. & Salgaller, M.L. Dendritic cell–based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res. 60, 829–833 (2000).

    CAS  PubMed  Google Scholar 

  24. Thurner, B. et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669–1678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cyster, J.G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447–450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Dieu, M.-C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sties. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sozzani, S. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083–1086 (1998).

    CAS  PubMed  Google Scholar 

  29. Yanagihara, S., Komura, E., Nagafune, J., Watari, H. & Yamaguchi, Y. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is upregulated upon maturation. J. Immunol. 161, 3096–3102 (1998).

    CAS  PubMed  Google Scholar 

  30. Saeki, H., Moore, A.M., Brown, M.J. & Hwang, S.T. Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162, 2472–2475 (1999).

    CAS  PubMed  Google Scholar 

  31. Thomas, W.R., Edwards, A.J., Watkins, M.C. & Asherson, G.L. Distribution of immunogenic cells after painting with the contact sensitizers fluorescein isothiocyanate and oxazolone. Different sensitizers form immunogenic complexes with different cell populations. Immunology 39, 21–27 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Love-Schimenti, C.D. & Kripke, M.L. Dendritic epidermal T cells inhibit T cell proliferation and may induce tolerance by cytotoxicity. J. Immunol. 153, 3450–3456 (1994).

    CAS  PubMed  Google Scholar 

  33. Porgador, A., Snyder, D. & Gilboa, E. Induction of antitumor immunity using bone marrow–generated dendritic cells. J. Immunol. 156, 2918–2926 (1996).

    CAS  PubMed  Google Scholar 

  34. Mandelbolm, O. et al. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature 369, 67–71 (1994).

    Article  CAS  Google Scholar 

  35. Sasaki, S. et al. Human immunodeficiency virus type-1-specific immune responses induced by DNA vaccination are greatly enhanced by mannan-coated diC14-amidine. Eur. J. Immunol. 27, 3121–3129 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Syrengelas, A.D., Chen, T.T. & Levy, R. DNA immunization induces protective immunity against B-cell lymphoma. Nat. Med. 2, 1038–1041 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Biragyn, A., Tani, K., Grimm, M.C., Weeks, S. & Kwak, L.W. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat. Biotechnol. 17, 253–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Lotze, M.T., Farhood, H., Wilson, C.C. & Storkus, W.J. Dendritic cell therapy of cancer and HIV infection. Dendritic cells: biology and clinical applications. (eds Lotze, M.T. & Thomson, A.W.) 459–485 (Academic Press, San Diego, CA; 1999).

    Google Scholar 

  39. Fushimi, T., Kojima, A., Moore, M.A. & Crystal, R.G. Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest. 105, 1383–1393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Charbonnier, A.S. et al. Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal Langerhans cells. J. Exp. Med. 190, 1755–1768 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dieu-Nosjean, M.C. et al. Macrophage inflammatory protein 3α is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J. Exp. Med. 192, 705–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zitvogel, L. et al. IL-12-engineered dendritic cells serve as effective tumor vaccine adjuvants in vivo. Ann. NY Acad. Sci. 795, 284–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Klein, C., Bueler, H. & Mulligan, R.C. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. Exp. Med. 191, 1699–1708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsue, H. et al. Induction of antigen-specific immunosuppression by CD95L cDNA-transfected “killer” dendritic cells. Nat. Med. 5, 930–937 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Takayama, T., Morelli, A.E., Robbins, P.D., Tahara, H. & Thomson, A.W. Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro. Gene Ther. 7, 1265–1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Matsue, H. et al. Dendritic cells undergo rapid apoptosis in vitro during antigen-specific interaction with CD4+ T cells. J. Immunol. 162, 5287–5298 (1999).

    CAS  PubMed  Google Scholar 

  47. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H.D. & Valentini, R.F. Human osteoblast response in vitro to platelet-derived growth factor and transforming growth factor-beta delivered from controlled-release polymer rods. Biomaterials 18, 1175–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Edelman, E.R., Mathiowitz, E., Langer, R. & Klagsbrun, M. Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12, 619–626 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Mohamadzadeh, M., Poltorak, A.N., Bergstresser, P.R., Beutler, B. & Takashima, A. Dendritic cells produce macrophage inflammatory protein-1γ, a new member of the CC chemokine family. J. Immunol. 156, 3102–3106 (1996).

    CAS  PubMed  Google Scholar 

  51. Mummert, M.E., Mohamadzadeh, M., Mummert, D.I., Mizumoto, N. & Takashima, A. Development of a peptide inhibitor or hyaluronan-mediated leukocyte trafficking. J. Exp. Med. 192, 769–779 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaminski, M.J., Cruz, P.D., Jr., Bergstresser, P.R. & Takashima, A. Killing of skin-derived tumor cells by mouse dendritic epidermal T cells. Cancer Res. 53, 4014–4019 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Gilboa for providing the E.G7-OVA and EL4 lines, and R. Granstein and J. Forman for providing the S1509a and 3LL tumor lines, respectively; P. Bergstresser and M. Mummert for thoughtful comments, D. Edelbaum and L. Ellinger for technical assistance, and P. Adcock for secretarial assistance. This study was supported by NIH grants (RO1-AR35068, RO1-AR43777, and RO1-AI43262) and by Centre de Recherches et d'Investigations Epidermiques et Sensorielles (CE.R.I.E.S.) Award (A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Takashima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumamoto, T., Huang, E., Paek, H. et al. Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. Nat Biotechnol 20, 64–69 (2002). https://doi.org/10.1038/nbt0102-64

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0102-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing