Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide)

Abstract

Controlled release from biodegradable polymers is a novel approach to replace daily painful injections of protein drugs. A major obstacle to development of these polymers is the need to retain the structure and biological activity of encapsulated proteins during months of incubation under physiological conditions. We encapsulated bovine serum albumin (BSA) in injectable poly(DL-lactide- co-glycolide) (PLGA) 50/50 cylindrical implants and determined the mechanism of BSA instability. Simulations of the polymer microclimate revealed that moisture and acidic pH (<3) triggered unfolding of encapsulated BSA, resulting in peptide bond hydrolysis and noncovalent aggregation. To neutralize the acids liberated by the biodegradable lactic/glycolic acid-based polyester, we coincorporated into the polymer an antacid, Mg(OH)2, which increased microclimate pH and prevented BSA structural losses and aggregation for over one month. We successfully applied this stabilization approach in both cylinder- and microsphere-injectable configurations and for delivery of angiogenic basic fibroblast growth factor and bone-regenerating bone morphogenetic protein-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of Mg(OH)2 content on BSA release kinetics (A) and encapsulated BSA aggregation kinetics (B) during incubation of the PLGA implants at 37°C in PBST.
Figure 2: Structural analyses of BSA from incubated PLGA millicylinders by SDS–PAGE (A), IEF (B), CD spectra (C), and fluorescence emission spectra (D).
Figure 3: (A) Controlled release of bFGF.

Similar content being viewed by others

References

  1. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  Google Scholar 

  2. Struck, M.M. Biopharmaceutical R&D success rates and development times. A new analysis provides benchmarks for the future. Bio/Technology 12, 674–677 (1994).

    CAS  PubMed  Google Scholar 

  3. Talmadge, J.E. The pharmaceutics and delivery of therapeutic polypeptides and proteins. Adv. Drug Delivery. Rev. 10, 247–299 (1993).

    Article  CAS  Google Scholar 

  4. Ogawa, Y., Okada, H., Heya, T. & Shimamota T. Controlled release of LHRH agonist, leuprolide acetate, from microcapsules: serum drug level profiles and pharmacological effects in animals. J. Pharm. Pharmcol. 41, 439–444 ( 1989).

    Article  CAS  Google Scholar 

  5. Okada, H., Doken, Y., Ogawa, Y. & Toguchi, H. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm. Res. 11, 1143 (1994).

    Article  CAS  Google Scholar 

  6. Dutta, A.S., Furr, B.J.A. & Hutchinson, F.G. Discovery and development of goserelin (Zoladex). Pharm. Med. 7, 9–28 ( 1993).

    Google Scholar 

  7. Schwendeman, S.P., Cardamone, M., Klibanov., A. & Langer, R. in Microparticulate systems for the delivery of proteins and vaccines (eds Cohen, S. & Bernstein, H.), 1–49 (Marcel Dekker, New York; 1996).

  8. Schwendeman, S.P., Costantino, H.R., Gupta, R.K. & Langer, R. in Controlled drug delivery. (ed. Park, K.), 229– 267 (American Chemical Society, Washington, D.C; 1997).

  9. Johnson, O.L. et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2, 795– 799 (1996).

    Article  CAS  Google Scholar 

  10. Cleland, J.L. & Jones, A.J.S. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm. Res. 13, 1464– 1475 (1996).

    Article  CAS  Google Scholar 

  11. Schwendeman, S.P., Tobio, M., Joworowicz, M., Alonso, M.J. & Langer, R. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsulation 15, 299–318 (1998).

    Article  CAS  Google Scholar 

  12. Putney, S.D. & Burke, P.A. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16 , 153–157 (1998).

    Article  CAS  Google Scholar 

  13. Costantino, H.R., Langer, R. & Klibanov, A.M. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J. Pharm. Sci. 83, 1662–1669 (1994).

    Article  CAS  Google Scholar 

  14. Herrlinger, M. Ph.D. In vitro polymerabbau und wirksttofffreigabe von poly-DL-laktidformlingen Thesis, Univ. Heidelberg, Germany (1994).

  15. Shenderova, A., Burke, T. & Schwendeman, S.P. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 16, 241–248 (1999).

    Article  CAS  Google Scholar 

  16. Brunner, A., Mäder, K. & Göpferich, A. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16, 847– 853 (1999).

    Article  CAS  Google Scholar 

  17. Mader, K., Bittner, B., Li, Y., Wohlauf, W. & Kissel, T. Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks. Pharm. Res. 15, 787–793 ( 1998).

    Article  CAS  Google Scholar 

  18. Fu, K., Pack, D.W., Laverdiere, A., Son, S. & Langer, R. Visualization of pH in degrading polymer microspheres. Proceedings 25th International Symposium on Controlled Resealse of Bioactive Materials 25, 150 –151 (1998).

    Google Scholar 

  19. Mader, K., Gallez, B., Liu, K.J. & Swartz, H.M. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 17, 457–461 ( 1996).

    Article  CAS  Google Scholar 

  20. Peters, T. Jr. Serum albumin. Adv. Protein Chem. 37, 161 –245 (1985).

    Article  CAS  Google Scholar 

  21. Manning, M.C., Patella, L. & Borchardt, R.T. Stability of protein pharmaceuticals. Pharm. Res. 6, 903–917 ( 1989).

    Article  CAS  Google Scholar 

  22. Heller, J. Development of poly(ortho esters): a historical overview. Biomaterials 11, 659–665 ( 1990).

    Article  CAS  Google Scholar 

  23. Li, S.M., Garreau, H. & Vert, M. Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acids) in aqueous media. Part 3. Influence of the morphology of poly(L-lactic acid). J. Mater. Sci. 1 , 123–130 (1990).

    CAS  Google Scholar 

  24. Hutchinson, F.G. & Furr, B.J.A. Biodegradable polymer systems for the sustained release of polypeptides. J. Controlled Release 13, 279–294 ( 1990).

    Article  CAS  Google Scholar 

  25. Wang, Y.J. et al. in Formulation, characterization, and stability of protein drugs (eds Pearlman, R. & Wang, Y.J.) 141–180 (Plenum Press, New York; 1996).

  26. Edelman, E.R., Nugent, M.A. & Karnovsky, M.J. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc. Natl. Acad. Sci. USA 90, 1513– 1517 (1993).

    Article  CAS  Google Scholar 

  27. Berscht, P.C., Nies, B., Liebendorfer, A. & Kreuter, J. Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15, 593–600 (1994).

    Article  CAS  Google Scholar 

  28. Fukunaga, K. et al. Aluminium beta-cyclodextrin sulphate a stabilizer and sustained-release carrier for basic fibroblast growth factor. J. Pharm. Pharmacol. 46, 168–171 ( 1994).

    Article  CAS  Google Scholar 

  29. Edelman, E.R., Mathiowitz, E., Langer, R. & Klagsbrun, M. Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12, 619–626 (1991).

    Article  CAS  Google Scholar 

  30. Davies, M.J. et al. In vitro assessment of the biological activity of basic fibroblast growth factor released from various polymers and biomatrices. Journal of Biomaterial Applications 12, 31– 56 (1997).

    Article  CAS  Google Scholar 

  31. Wang, E.A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA 87, 2220– 2224 (1990).

    Article  CAS  Google Scholar 

  32. Welch, R.D. et al. Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. J. Bone Miner. Res. 13, 1483–1490 (1998).

    Article  CAS  Google Scholar 

  33. Mayer, M., Hollinger, J., Ron, E. & Wozney, J. Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and a polymer carrier. Plast. Reconstr. Surg. 98, 247–259 (1996).

    Article  CAS  Google Scholar 

  34. Kenley, R.A. et al. Biotechnology and bone graft substitutes. Pharm. Res. 10, 1393–1401 ( 1993).

    Article  CAS  Google Scholar 

  35. Gospodarowicz, D. & Cheng, J. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128, 475–484 (1986).

    Article  CAS  Google Scholar 

  36. Sommer, A. & Rifkin, D.B. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 138, 215–220 ( 1989).

    Article  CAS  Google Scholar 

  37. Sullivan, R. & Klagsbrun, M. Purification and assay of intact human basic fibroblast growth factor using heparin-sepharose chromatography . J. Tiss. Culture Methods 10, 125– 132 (1986).

    Article  CAS  Google Scholar 

  38. Crotts, G., Sah, H. & Park, T.G. Adsorption determines in-vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J. Controlled Release. 47, 101–111 ( 1997).

    Article  CAS  Google Scholar 

  39. Zhang, X., Wyss, U.P, Amsden, B. & Goosen, M.F.A. Controlled release of albumin from biodegradable poly(DL-lactide) cylinders. J. Controlled Release 25, 61–69 (1993).

    Article  CAS  Google Scholar 

  40. Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L.H. & Langer, R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8, 713–720 (1991).

    Article  CAS  Google Scholar 

  41. Schwendeman, S.P. et al. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl. Acad. Sci. USA 92, 11234–11238 (1995).

    Article  CAS  Google Scholar 

  42. Liu, W.R., Langer, R. & Klibanov, A.M. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37, 177–184 (1991).

    Article  CAS  Google Scholar 

  43. Shenderova, A., Burke, T.G. & Schwendeman, S.P. Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm. Res. 14, 1406–1413 (1997).

    Article  CAS  Google Scholar 

  44. Watanabe, H. et al. A sensitive enzyme immunoassay for human basic fibroblast growth factor. Biochem. Biophys. Res. Commun. 175, 229–235 (1991).

    Article  CAS  Google Scholar 

  45. Gabra, N., Khiat, A. & Calabresi, P. Detection of elevated basic fibroblast growth factor during early hours of in vitro angiogenesis using a fast ELISA immunoassay . Biochem. Biophys. Res. Commun. 205, 1423–1430 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Wang of Synzyme Technologies (Irvine, CA) for his helpful suggestions. We are very grateful to Prof. Mark Coggeshall, from the Department of Microbiology of the Ohio State University for his help in the bFGF bioassay experiment. We thank Dr. Hanne Bentz from Orthogene and Prof. Jeffrey Hubbell from the Swiss Federal Technology Institute for their aid in the BMP-2 studies. We also thank Professor Gary Means from the Department of Biochemistry, and Dr. Jichao Kang of the College of Pharmacy at the Ohio State University for their helpful discussions and technical assistance, respectively. This work was supported by NIH DE 12183 and a PhRMA grant to S.P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Schwendeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Mallery, S. & Schwendeman, S. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18, 52–57 (2000). https://doi.org/10.1038/71916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing