Nature Biotechnology's academic spinouts of 2017

An Erratum to this article was published on 06 August 2018

This article has been updated

Our annual survey highlights how immune-oncology and screens based on the application of cutting-edge omics technologies are providing a launchpad for a succession of startups interrogating biology across biomedicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 15 May 2018

    In the version of this article initially published, the name and photo of Viviane Tabar, one of BlueRock's founders, was omitted. A misplaced '&' in the author list in the PDF has been corrected, and the abbreviation MSKCC added in the text. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Garber, K. Natural killer cells blaze into immuno-oncology. Nat. Biotechnol. 34, 219–220 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Ardolino, M. et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J. Clin. Invest. 124, 4781–4794 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Deng, W. et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Thompson, T.W. et al. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. eLife 6, e30881 (2017).

    Article  Google Scholar 

  5. 5

    Matthews, M.L. et al. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat. Chem. 9, 234–243 (2017).

    CAS  Article  Google Scholar 

  6. 6

    Perni, M. et al. A natural product inhibits the initiation of a-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA 114, E1009–E1017 (2017).

    CAS  Article  Google Scholar 

  7. 7

    Robotta, M., Cattani, J., Martins, J.C., Subramaniam, V. & Drescher, M. Alpha-synuclein disease mutations are structurally defective and locally affect membrane binding. J. Am. Chem. Soc. 139, 4254–4257 (2017).

    CAS  Article  Google Scholar 

  8. 8

    Svensson, E. et al. Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol. 78, 522–529 (2015).

    Article  Google Scholar 

  9. 9

    Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Chong, J.J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Adler, A.S. et al. Rare, high-affinity mouse anti-PD-1 antibodies that function in checkpoint blockade, discovered using microfluidics and molecular genomics. MAbs 9, 1270–1281 (2017).

    CAS  Article  Google Scholar 

  13. 13

    Adler, A.S. et al. Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics. MAbs 9, 1282–1296 (2017).

    CAS  Article  Google Scholar 

  14. 14

    Sheridan, C. Recasting natural product research. Nat. Biotechnol. 30, 385–387 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Mateos-Gomez, P.A. et al. Mammalian polymerase q promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. & Friend, S.H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Friend, S.H. & Oliff, A. Emerging uses for genomic information in drug discovery. N. Engl. J. Med. 338, 125–126 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Brockmann, M. et al. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature 546, 307–311 (2017).

    CAS  Article  Google Scholar 

  23. 23

    Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Chen, R. et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat. Biotechnol. 34, 531–538 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Branca, M., Garber, K. & DeFrancesco, L. Nature Biotechnology's academic spinouts of 2017. Nat Biotechnol 36, 297–306 (2018). https://doi.org/10.1038/nbt.4121

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing