Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-type-specific metabolic labeling of nascent proteomes in vivo


Although advances in protein labeling methods have made it possible to measure the proteome of mixed cell populations, it has not been possible to isolate cell-type-specific proteomes in vivo. This is because the existing methods for metabolic protein labeling in vivo access all cell types. We report the development of a transgenic mouse line where Cre-recombinase-induced expression of a mutant methionyl-tRNA synthetase (L274G) enables the cell-type-specific labeling of nascent proteins with a non-canonical amino-acid and click chemistry. Using immunoblotting, imaging and mass spectrometry, we use our transgenic mouse to label and analyze proteins in excitatory principal neurons and Purkinje neurons in vitro (brain slices) and in vivo. We discover more than 200 proteins that are differentially regulated in hippocampal excitatory neurons by exposing mice to an environment with enriched sensory cues. Our approach can be used to isolate, analyze and quantitate cell-type-specific proteomes and their dynamics in healthy and diseased tissues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetically targeted protein labeling.
Figure 2: Cell-type-specific proteomics in vivo: the hippocampal excitatory neuron proteome.
Figure 3: Cell-type-specific proteomics in vivo.
Figure 4: The CaMK2a excitatory hippocampal proteome in an enriched environment (EE).


  1. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  Google Scholar 

  2. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  3. Elsässer, S.J., Ernst, R.J., Walker, O.S. & Chin, J.W. Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat. Methods 13, 158–164 (2016).

    Article  Google Scholar 

  4. Mahdavi, A. et al. Engineered aminoacyl-tRNA synthetase for cell-selective analysis of mammalian protein synthesis. J. Am. Chem. Soc. 138, 4278–4281 (2016).

    Article  CAS  Google Scholar 

  5. Ngo, J.T. et al. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5, 715–717 (2009).

    Article  CAS  Google Scholar 

  6. Erdmann, I. et al. Cell-selective labelling of proteomes in Drosophila melanogaster. Nat. Commun. 6, 7521 (2015).

    Article  Google Scholar 

  7. Yuet, K.P. et al. Cell-specific proteomic analysis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 112, 2705–2710 (2015).

    Article  CAS  Google Scholar 

  8. Link, A.J. et al. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl. Acad. Sci. USA 103, 10180–10185 (2006).

    Article  CAS  Google Scholar 

  9. Miyazaki, J. et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79, 269–277 (1989).

    Article  CAS  Google Scholar 

  10. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  Google Scholar 

  11. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  12. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  Google Scholar 

  13. Dieterich, D.C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).

    Article  CAS  Google Scholar 

  14. tom Dieck, S. et al. Direct visualization of newly synthesized target proteins in situ. Nat. Methods 12, 411–414 (2015).

    Article  CAS  Google Scholar 

  15. Howarth, C., Peppiatt-Wildman, C.M. & Attwell, D. The energy use associated with neural computation in the cerebellum. J. Cereb. Blood Flow Metab. 30, 403–414 (2010).

    Article  Google Scholar 

  16. Cho, K.O., Hunt, C.A. & Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  17. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat. Cell Biol. 6, 319–327 (2004).

    Article  CAS  Google Scholar 

  18. Dateki, M. et al. Neurochondrin negatively regulates CaMKII phosphorylation, and nervous system-specific gene disruption results in epileptic seizure. J. Biol. Chem. 280, 20503–20508 (2005).

    Article  CAS  Google Scholar 

  19. Han, K. et al. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Hum. Mol. Genet. 24, 1813–1823 (2015).

    Article  CAS  Google Scholar 

  20. Weedon, M.N. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).

    Article  CAS  Google Scholar 

  21. Novak, M.J. et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov. Disord. 25, 2176–2182 (2010).

    Article  Google Scholar 

  22. Bennett, E.L., Diamond, M.C., Krech, D. & Rosenzweig, M.R. Chemical and anatomical plasticity brain. Science 146, 610–619 (1964).

    Article  CAS  Google Scholar 

  23. Shih, Y.T. & Hsueh, Y.P. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat. Commun. 7, 11020 (2016).

    Article  CAS  Google Scholar 

  24. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  25. Monetti, M., Nagaraj, N., Sharma, K. & Mann, M. Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat. Methods 8, 655–658 (2011).

    Article  CAS  Google Scholar 

  26. Eichelbaum, K., Winter, M., Berriel Diaz, M., Herzig, S. & Krijgsveld, J. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol. 30, 984–990 (2012).

    Article  CAS  Google Scholar 

  27. Liu, R. et al. Quantitative non-canonical amino acid tagging (QuaNCAT) proteomics identifies distinct patterns of protein synthesis rapidly induced by hypertrophic agents in cardiomyocytes, revealing new aspects of metabolic remodeling. Mol. Cell. Proteomics 15, 3170–3189 (2016).

    Article  Google Scholar 

  28. McShane, E. et al. Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167, 803–815 (2016).

    Article  CAS  Google Scholar 

  29. Alvarez-Castelao, B. & Schuman, E.M. The regulation of synaptic protein turnover. J. Biol. Chem. 290, 28623–28630 (2015).

    Article  CAS  Google Scholar 

  30. McNair, K., Broad, J., Riedel, G., Davies, C.H. & Cobb, S.R. Global changes in the hippocampal proteome following exposure to an enriched environment. Neuroscience 145, 413–422 (2007).

    Article  CAS  Google Scholar 

  31. Moser, E.I., Kropff, E. & Moser, M.B. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    Article  CAS  Google Scholar 

  32. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  33. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  Google Scholar 

  34. Cembrowski, M.S., Wang, L., Sugino, K., Shields, B.C. & Spruston, N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997 (2016).

    Article  Google Scholar 

  35. de Felipe, P. et al. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol. 24, 68–75 (2006).

    Article  CAS  Google Scholar 

  36. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  37. Branda, C.S. & Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  Google Scholar 

  38. Bachmanov, A.A., Tordoff, M.G. & Beauchamp, G.K. Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem. Senses 26, 905–913 (2001).

    Article  CAS  Google Scholar 

  39. Dieterich, D.C. et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2, 532–540 (2007).

    Article  Google Scholar 

  40. Szychowski, J. et al. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J. Am. Chem. Soc. 132, 18351–18360 (2010).

    Article  CAS  Google Scholar 

  41. Wis´niewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  Google Scholar 

  42. Schanzenbächer, C.T., Sambandan, S., Langer, J.D. & Schuman, E.M. Nascent proteome remodeling following homeostatic scaling at hippocampal synapses. Neuron 92, 358–371 (2016).

    Article  Google Scholar 

  43. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  44. Vizcaíno, J.A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  Google Scholar 

  45. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  Google Scholar 

  46. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  Google Scholar 

  47. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  Google Scholar 

  48. Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).

    Article  CAS  Google Scholar 

  49. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  Google Scholar 

  50. Kirsch, L., Liscovitch, N. & Chechik, G. Localizing genes to cerebellar layers by classifying ISH images. PLoS Comput. Biol. 8, e1002790 (2012).

    Article  CAS  Google Scholar 

Download references


We thank H. Geptin, D. Vogel, N. Fuerst, I. Wüllenweber and F. Rupprecht for excellent technical assistance. We thank E. Noll for the synthesis of ANL and P. Landgraf for the synthesis of the SH-alkyne. We thank S. Garg for her help with FUNCAT and M. Heumueller for his help with some of the experiments. We thank R. Pieaud and S. Junek for their assistance with imaging. We thank F. Kretschmer for his help with the open field analysis. We thank E. Northrup, S. Zeissler, S. Gil Mast and the animal facility of MPI for Brain Research for their excellent support. We thank J. Sanes and J. Chakkalakal for the early generation of a Thy-1 MetRS* mouse. Work in the laboratory of E.M.S. is supported by the Max Planck Society, the European Research Council, DFG CRC 902 and 1080, and the DFG Cluster of Excellence for Macromolecular Complexes. B.A. was supported by a Marie Curie Intra-European Fellowship for career development. C.H. was supported by a Marie Curie Career Integration Grant. D.C.D. is supported by DFG CRC 779 and 854. Research on proteomic labelling at Caltech is supported by the Programmable Molecular Technology Initiative of the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations



B.A.-C., C.T.S. and C.H.: conception and design of experiments, acquisition, analysis and interpretation of data. C.G., S.t.D. and A.R.D.: conception and design of experiments, acquisition of data. I.B., B.N.-A. and E.C.: acquisition of data. A.M.: provided reagents. D.D.: provided reagents and advice on experiments. D.A.T.: conception and design of experiments. J.D.L.: acquisition of data, analysis and interpretation of data. E.M.S.: conception and design of experiments, analysis and interpretation of data, drafting, writing and revising the article. All authors contributed to the writing and revision of the manuscript.

Corresponding author

Correspondence to Erin M Schuman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 80295 kb)

Reporting Summary (PDF 159 kb)

Supplementary Table 1

CaMK2a (standard cage) excitatory hippocampal proteome. (XLSX 1098 kb)

Supplementary Table 2

Gene ontology: CaMK2a (standard cage) excitatoryhippocampal proteome. (XLSX 40 kb)

Supplementary Table 3

Cell-type specific protein and gene markers (XLSX 265 kb)

Supplementary Table 4

GAD2 proteome. (XLSX 764 kb)

Supplementary Table 5

Gene ontology: GAD2 Purkinje neuron proteome. (XLSX 360 kb)

Supplementary Table 6

Differentially expressed genes in CaMK2a (standard cage) vs GAD2 proteomes. (XLSX 289 kb)

Supplementary Table 7

CaMK2a enriched environment excitatory hippocampalproteome. (XLSX 1068 kb)

Supplementary Table 8

Differentially expressed genes in CaMK2a-standard cage vs CaMK2a- enriched environment proteomes. (XLSX 128 kb)

Supplementary Table 9

Gene ontology of differentially expressed genes inCaMK2a-standard cage vs CaMK2a-enriched environment proteomes. (XLSX 38 kb)

Supplementary Table 10

Primers used for mouse genotyping. (DOCX 59 kb)

Supplementary Table 11

Custom parameters used for MS analysis in MaxQuantand Perseus. (XLSX 20 kb)

Supplementary Table 12

Full hippocampus, cerebellum and glia proteomes. (XLSX 2312 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Castelao, B., Schanzenbächer, C., Hanus, C. et al. Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat Biotechnol 35, 1196–1201 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research