Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms

Abstract

Addressing the safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals in need of assessment and the challenges of species extrapolation require the development of alternative approaches. Our approach, the US Environmental Protection Agency's ToxCast program, utilizes a large suite of in vitro and model organism assays to interrogate important chemical libraries and computationally analyze bioactivity profiles. Here we evaluated one component of the ToxCast program, the use of primary human cell systems, by screening for chemicals that disrupt physiologically important pathways. Chemical-response signatures for 87 endpoints covering molecular functions relevant to toxic and therapeutic pathways were generated in eight cell systems for 641 environmental chemicals and 135 reference pharmaceuticals and failed drugs. Computational clustering of the profiling data provided insights into the polypharmacology and potential off-target effects for many chemicals that have limited or no toxicity information. The endpoints measured can be closely linked to in vivo outcomes, such as the upregulation of tissue factor in endothelial cell systems by compounds linked to the risk of thrombosis in vivo. Our results demonstrate that assaying complex biological pathways in primary human cells can identify potential chemical targets, toxicological liabilities and mechanisms useful for elucidating adverse outcome pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of responses for all chemicals and endpoints.
Figure 2: Comparison of endpoints from the 3C system for cluster 28 containing estrogen receptor (ER) agonists (blue) and cluster 48 containing estrogen receptor antagonists/selective estrogen receptor modulators (red).
Figure 3: Function similarity map for 135 failed pharmaceutical compounds.
Figure 4: Distribution of mechanism class decision values (DV) for all test concentrations of all compounds shown as self-organizing maps in a trellis plot conditioned by mechanism class DV.

References

  1. 1

    Arrowsmith, J. Trial watch, phase III and submission failures, 2007–2010. Nat. Rev. Drug Discov. 10, 87 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Judson, R. et al. The toxicity data landscape for environmental chemicals. Environ. Health Perspect. 117, 685–695 (2009).

    CAS  Article  Google Scholar 

  3. 3

    National Research Council. Toxicity Testing in the 21st Century: a Vision and a Strategy (National Academies Press, Washington DC, 2007).

  4. 4

    Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Houck, K.A. & Kavlock, R.J. Understanding mechanisms of toxicity: insights from drug discovery research. Toxicol. Appl. Pharmacol. 227, 163–178 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Chen, Y. & Shoichet, B.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat. Chem. Biol. 5, 358–364 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Kitchen, D.B., Decornez, H., Furr, J.R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–367 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Berg, E., Yang, J. & Polokoff, M. Building predictive models for mechanism of action classification from phenotypic assay datasets. J. Biomol. Screen. 18, 1260–1269 (2013).

    Article  Google Scholar 

  10. 10

    Berg, E.L., Kunkel, E.J., Hytopoulos, E. & Plavec, I. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharmacol. Toxicol. Methods 53, 67–74 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Berg, E.L. et al. Chemical target and pathway toxicity mechanisms defined in primary human cell systems. J. Pharmacol. Toxicol. Methods 61, 3–15 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Houck, K.A. et al. Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. J. Biomol. Screen. 14, 1054–1066 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Kleinstreuer, N.C. et al. Environmental impact on vascular development predicted by high-throughput screening. Environ. Health Perspect. 119, 1596–1603 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Martin, M.T. et al. Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol. Reprod. 85, 327–339 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Sipes, N.S. et al. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data. Toxicol. Sci. 124, 109–127 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Dix, D.J. et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 95, 5–12 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Kavlock, R. et al. Update on EPA's ToxCast program: providing high throughput decision support tools for chemical risk management. Chem. Res. Toxicol. 25, 1287–1302 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Tice, R.R., Austin, C.P., Kavlock, R.J. & Bucher, J.R. Improving the human hazard characterization of chemicals: a Tox21 update. Environ. Health Perspect. 121, 756–765 (2013).

    Article  Google Scholar 

  19. 19

    Ayala, A., Parrado, J., Bougria, M. & Machado, A. Effect of oxidative stress, produced by cumene hydroperoxide, on the various steps of protein synthesis: modifications of elongation factor-2. J. Biol. Chem. 271, 23105–23110 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Lau, C. et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol. Sci. 74, 382–392 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Bogdanska, J. et al. Tissue distribution of (3)(5)S-labelled perfluorooctane sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high experimental dose. Toxicology 284, 54–62 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Arredondo, J. et al. A receptor-mediated mechanism of nicotine toxicity in oral keratinocytes. Lab. Invest. 81, 1653–1668 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Kleinstreuer, N. et al. A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9, e1002996 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Khaidakov, M. et al. Statins and angiogenesis: is it about connections? Biochem. Biophys. Res. Commun. 387, 543–547 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013).

    Article  Google Scholar 

  26. 26

    McCann, F.E. et al. Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha from human rheumatoid synovial cells and ameliorates experimental arthritis. Arthritis Res. Ther. 12, R107 (2010).

    Article  Google Scholar 

  27. 27

    Viguerie, N. et al. Multiple effects of a short-term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiol. Genomics 44, 141–151 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Augustine-Rauch, K.A. et al. Evidence for a molecular mechanism of teratogenicity of SB-236057, a 5–HT1B receptor inverse agonist that alters axial formation. Birth Defects Res. A Clin. Mol. Teratol. 70, 789–807 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Owens, A.P. III & Mackman, N. Role of tissue factor in atherothrombosis. Curr. Atheroscler. Rep. 14, 394–401 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Camici, G.G. et al. Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents. Eur. Heart J. 31, 236–242 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Barua, R.S. & Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol. 33, 1460–1467 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Cummings, S.R. et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple outcomes of raloxifene evaluation. J. Am. Med. Assoc. 281, 2189–2197 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Lipton, A., Harvey, H.A. & Hamilton, R.W. Venous thrombosis as a side effect of tamoxifen treatment. Cancer Treat. Rep. 68, 887–889 (1984).

    CAS  PubMed  Google Scholar 

  34. 34

    Kunkel, E.J. et al. An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J. 18, 1279–1281 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Plavec, I. et al. Method for analyzing signaling networks in complex cellular systems. Proc. Natl. Acad. Sci. USA 101, 1223–1228 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Robichaud, A. et al. Assessing the emetic potential of PDE4 inhibitors in rats. Br. J. Pharmacol. 135, 113–118 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Kirkiacharian, S., Chidiack, H., Philibert, D., Van De Velde, P. & Bouchoux, F. Binding affinity to steroid hormone receptors and antiproliferative action on MCF-7 cells of coumarin derivatives and isoflavonoids. Ann. Pharm. Fr. 57, 332–339 (1999).

    CAS  PubMed  Google Scholar 

  38. 38

    Barna, T.M. et al. Crystal structure of pentaerythritol tetranitrate reductase: “flipped” binding geometries for steroid substrates in different redox states of the enzyme. J. Mol. Biol. 310, 433–447 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Murotani, T., Ishizuka, T., Isogawa, Y., Karashima, M. & Yamatodani, A. Possible involvement of serotonin 5–HT2 receptor in the regulation of feeding behavior through the histaminergic system. Neuropharmacology 61, 228–233 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Ouattara, B. et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 167, 1160–1167 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Fell, M.J. et al. Activation of metabotropic glutamate (mGlu)2 receptors suppresses histamine release in limbic brain regions following acute ketamine challenge. Neuropharmacology 58, 632–639 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Aizu-Yokota, E., Ichinoseki, K. & Sato, Y. Microtubule disruption induced by estradiol in estrogen receptor-positive and -negative human breast cancer cell lines. Carcinogenesis 15, 1875–1879 (1994).

    CAS  Article  Google Scholar 

  43. 43

    Thiede, A., Gellerich, F.N., Schonfeld, P. & Siemen, D. Complex effects of 17beta-estradiol on mitochondrial function. Biochim. Biophys. Acta 1817, 1747–1753 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Cohen, S.B. et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum. 60, 335–344 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Ding, C. Drug evaluation: VX-702, a MAP kinase inhibitor for rheumatoid arthritis and acute coronary syndrome. Curr. Opin. Investig. Drugs 7, 1020–1025 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Attene-Ramos, M.S. et al. The Tox21 robotic platform for the assessment of environmental chemicals - from vision to reality. Drug Discov. Today 18, 716–723 (2013).

    CAS  Article  Google Scholar 

  47. 47

    US Environmental Protection Agency. US Environmental Protection Agency Endocrine Disruptor Screening Program Comprehensive Management Plan. http://www.epa.gov/endo/pubs/edsp21_work_plan_summary%20_overview_final.pdfhttp://www.epa.gov/scipoly/oscpendo/pubs/EDSP_Comprehesive_Management%20Plan_%20021414_f.pdf (Jointly developed by the Office of Chemical Safety & Pollution Prevention and the Office of Water, EPA, 2014).

  48. 48

    Kunkel, E.J. et al. Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMAP analysis in complex human primary cell-based models. Assay Drug Dev. Technol. 2, 431–442 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Williams, O. et al. Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: a prototype for new anti-inflammatory drugs. Chem. Biol. 17, 123–134 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Berg, E.L., Kunkel, E.J. & Hytopoulos, E. Biological complexity and drug discovery: a practical systems biology approach. Syst. Biol. (Stevenage) 152, 201–206 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Melrose, J., Tsurushita, N., Liu, G. & Berg, E.L. IFN-gamma inhibits activation-induced expression of E- and P-selectin on endothelial cells. J. Immunol. 161, 2457–2464 (1998).

    CAS  PubMed  Google Scholar 

  52. 52

    Clark, R.D., Patterson, D.E., Soltanshahi, F., Blake, J.F. & Matthew, J.B. Visualizing substructural fingerprints. J. Mol. Graphics Model. 18, 404–411 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank our pharmaceutical industry partners Pfizer, GlaxoSmithKline, Roche, Merck, Sanofi and Astellas for donating 135 failed drugs and providing feedback on the manuscript, and W. Casey, L. Urban, C. Wood and K. Crofton for helpful suggestions on the manuscript. The EPA, through its Office of Research and Development, funded and managed the research described here. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the US Environmental Protection Agency.

Author information

Affiliations

Authors

Contributions

R.J.K., D.J.D. and K.A.H. conceived and supervised the ToxCast project. A.M.R. oversaw chemical management. D.M.R., M.T.M. and R.S.J. designed and operated the data analysis workflow. N.C.K. and K.A.H. wrote the manuscript with editing by T.B.K., R.J.K., J.Y. and E.L.B. J.Y., M.P. and E.L.B. performed the experimental work. N.C.K., J.Y., K.A.H. and E.L.B. carried out the data analysis specific to this manuscript.

Corresponding author

Correspondence to Keith A Houck.

Ethics declarations

Competing interests

J.Y., M.P. and E.L.B. are employees of BioSeek, a Division of DiscoveRx, Inc. and performed the bioassays and assisted with analysis of the results.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Discussion (PDF 13591 kb)

Supplementary Tables

Supplementary Tables 1–13 (XLSX 10025 kb)

Supplementary Software (ZIP 34 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleinstreuer, N., Yang, J., Berg, E. et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32, 583–591 (2014). https://doi.org/10.1038/nbt.2914

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing