Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells


Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eight TFs reprogram MEFs to induced OPCs.
Figure 2: Eight TF-induced MEFs exhibit properties of bona fide OPCs.
Figure 3: Eight TF-induced MEFs function to generate compact myelin.
Figure 4: A2B5 immunosorting allows for the prospective enrichment of iOPCs.
Figure 5: Sox10, Olig2 and Nkx6.2 are sufficient to reprogram fibroblasts to iOPCs.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus


  1. Goldman, S.A., Nedergaard, M. & Windrem, M.S. Glial progenitor cell-based treatment and modeling of neurological disease. Science 338, 491–495 (2012).

    Article  CAS  Google Scholar 

  2. Franklin, R.J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    Article  CAS  Google Scholar 

  3. Windrem, M.S. et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2, 553–565 (2008).

    Article  CAS  Google Scholar 

  4. Sim, F. et al. CD140a identifies a population of highly myelinogenic, migration-competent, and efficiently engrafting human oligodendrocyte progenitor cells. Nat. Biotechnol. (2011).

  5. Najm, F.J. et al. Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat. Methods 8, 957–962 (2011).

    Article  CAS  Google Scholar 

  6. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  Google Scholar 

  7. Pang, Z.P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    Article  CAS  Google Scholar 

  8. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011).

    Article  CAS  Google Scholar 

  9. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. USA 108, 10343–10348 (2011).

    Article  CAS  Google Scholar 

  10. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  Google Scholar 

  11. Kim, J. et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Natl. Acad. Sci. USA 108, 7838–7843 (2011).

    Article  CAS  Google Scholar 

  12. Son, E.Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  Google Scholar 

  13. Han, D.W. et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465–472 (2012).

    Article  CAS  Google Scholar 

  14. Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473–479 (2012).

    Article  CAS  Google Scholar 

  15. Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T.C. & Wernig, M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl. Acad. Sci. USA 109, 2527–2532 (2012).

    Article  CAS  Google Scholar 

  16. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  Google Scholar 

  17. Liu, Z. et al. Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev. Biol. 302, 683–693 (2007).

    Article  CAS  Google Scholar 

  18. Zhang, X. et al. Induction of oligodendrocytes from adult human olfactory epithelial-derived progenitors by transcription factors. Stem Cells 23, 442–453 (2005).

    Article  CAS  Google Scholar 

  19. Mallon, B.S., Shick, H.E., Kidd, G.J. & Macklin, W.B. Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J. Neurosci. 22, 876–885 (2002).

    Article  CAS  Google Scholar 

  20. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).

    Article  CAS  Google Scholar 

  21. Bogler, O., Wren, D., Barnett, S.C., Land, H. & Noble, M. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc. Natl. Acad. Sci. USA 87, 6368–6372 (1990).

    Article  CAS  Google Scholar 

  22. Noble, M., Murray, K., Stroobant, P., Waterfield, M.D. & Riddle, P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333, 560–562 (1988).

    Article  CAS  Google Scholar 

  23. Richardson, W.D., Pringle, N., Mosley, M.J., Westermark, B. & Dubois-Dalcq, M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319 (1988).

    Article  CAS  Google Scholar 

  24. Noll, E. & Miller, R.H. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118, 563–573 (1993).

    CAS  Google Scholar 

  25. Rowitch, D.H. & Kriegstein, A.R. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214–222 (2010).

    Article  CAS  Google Scholar 

  26. Watkins, T.A., Emery, B., Mulinyawe, S. & Barres, B.A. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  Google Scholar 

  27. Crang, A.J., Gilson, J. & Blakemore, W.F. The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J. Neurocytol. 27, 541–553 (1998).

    Article  CAS  Google Scholar 

  28. Barres, B.A., Lazar, M.A. & Raff, M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108 (1994).

    CAS  Google Scholar 

  29. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  Google Scholar 

  30. Chernoff, G.F. Shiverer: an autosomal recessive mutant mouse with myelin deficiency. J. Hered. 72, 128 (1981).

    Article  CAS  Google Scholar 

  31. Gahwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A. & Thompson, S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  CAS  Google Scholar 

  32. Bai, L. et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat. Neurosci. 15, 862–870 (2012).

    Article  CAS  Google Scholar 

  33. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010).

    Article  CAS  Google Scholar 

  34. Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009).

    Article  CAS  Google Scholar 

  35. Yano, S. et al. An antigen retrieval method using an alkaline solution allows immunoelectron microscopic identification of secretory granules in conventional epoxy-embedded tissue sections. J. Histochem. Cytochem. 51, 199–204 (2003).

    Article  CAS  Google Scholar 

  36. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  Google Scholar 

  37. Mikula, S., Binding, J. & Denk, W. Staining and embedding the whole mouse brain for electron microscopy. Nat. Methods 9, 1198–1201 (2012).

    Article  CAS  Google Scholar 

Download references


This research was supported by US National Institutes of Health (NIH) grants MH087877 (P.J.T. and R.H.M.), NS30800 (R.H.M.) and EY019880 (T.M.); NIH predoctoral training grants F31NS083354 (A.M.L.) and T32GM008056 (R.T.K.); Case Western Reserve University School of Medicine (P.J.T.); the New York Stem Cell Foundation (P.J.T.); the Mt. Sinai Health Care Foundation (P.J.T.); and the Cytometry & Imaging Microscopy, and the Gene Expression and Genotyping core facilities of the Case Comprehensive Cancer Center (P30CA043703). P.J.T. is a New York Stem Cell Foundation–Robertson Investigator. We are grateful to L. Cooperman, J. Wanta, M. Hitomi, J. Krasno, M. Karl, S. Fyffe-Maricich, S. Wu, M. Pendergast, O. Corradin, T. LaFramboise and P. Scacheri for technical assistance, I. Tsung for artwork, as well as N. Avishai and G. Kidd for 3D scanning electron microscopy imaging and data processing.

Author information

Authors and Affiliations



F.J.N., A.M.L. and P.J.T. designed the reprogramming strategy and generated all iOPCs; F.J.N., A.M.L., R.T.K. and P.J.T. performed in vitro differentiation experiments; A.V.C., A.Z., F.J.N., A.M.L. and T.M. performed in vivo myelination experiments; A.Z., F.J.N., A.M.L., R.H.M. and P.J.T. performed slice culture myelination experiments; K.W., A.Z. and R.H.M. produced electron microscope images; F.J.N., A.M.L., D.C.F. and P.J.T. generated and analyzed gene expression data; F.J.N., A.M.L., R.H.M. and P.J.T. analyzed all of the data and wrote the paper. All authors edited and approved the final manuscript.

Corresponding author

Correspondence to Paul J Tesar.

Ethics declarations

Competing interests

P.J.T., R.H.M. and F.J.N. have a pending patent application for this technology.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 7874 kb)

Supplementary Table 1

Transcription factors enriched in CNS lineages (used to generate Figure 1b) (XLS 21 kb)

Supplementary Table 2

GREAT analysis for Najm, Lager, et al. (2013) (XLS 186 kb)

Supplementary Movie 1

3-dimensional reconstruction of serial block-face scanning electron micrographs showing iOPC myelin in the dorsal column of the hypomyelinated shiverer spinal cord (MOV 30996 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Najm, F., Lager, A., Zaremba, A. et al. Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31, 426–433 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing