Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production


The ever-increasing incidence of antibiotic-resistant infections combined with a weak pipeline of new antibiotics has created a global public health crisis1. Accordingly, novel strategies for enhancing our antibiotic arsenal are needed. As antibiotics kill bacteria in part by inducing reactive oxygen species (ROS)2,3,4, we reasoned that targeting microbial ROS production might potentiate antibiotic activity. Here we show that ROS production can be predictably enhanced in Escherichia coli, increasing the bacteria's susceptibility to oxidative attack. We developed an ensemble approach of genome-scale, metabolic models capable of predicting ROS production in E. coli. The metabolic network was systematically perturbed and its flux distribution analyzed to identify targets predicted to increase ROS production. Targets that were predicted in silico were experimentally validated and further shown to confer increased susceptibility to oxidants. Validated targets also increased susceptibility to killing by antibiotics. This work establishes a systems-based method to tune ROS production in bacteria and demonstrates that increased microbial ROS production can potentiate killing by oxidants and antibiotics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Systems approach to enhance microbial ROS production.
Figure 2: In silico predictions and experimental measures of H2O2 and O2 levels.
Figure 3: Evaluation of susceptibility to killing by oxidants.
Figure 4: Evaluation of susceptibility to killing by bactericidal antibiotics and combination treatments with a chemical inhibitor.


  1. Arias, C.A. & Murray, B.E. Antibiotic-resistant bugs in the 21st century–a clinical super-challenge. N. Engl. J. Med. 360, 439–443 (2009).

    Article  CAS  Google Scholar 

  2. Foti, J.J., Devadoss, B., Winkler, J.A., Collins, J.J. & Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336, 315–319 (2012).

    Article  CAS  Google Scholar 

  3. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  4. Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., Cottarel, G. & Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  Google Scholar 

  5. Carlioz, A. & Touati, D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5, 623–630 (1986).

    Article  CAS  Google Scholar 

  6. Loewen, P.C. Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity. J. Bacteriol. 157, 622–626 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dwyer, D.J., Kohanski, M.A., Hayete, B. & Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91 (2007).

    Article  Google Scholar 

  8. Hebrard, M., Viala, J.P., Meresse, S., Barras, F. & Aussel, L. Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J. Bacteriol. 191, 4605–4614 (2009).

    Article  CAS  Google Scholar 

  9. Liu, C.I. et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391–1394 (2008).

    Article  CAS  Google Scholar 

  10. Imlay, J.A. & Fridovich, I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266, 6957–6965 (1991).

    CAS  PubMed  Google Scholar 

  11. Korshunov, S. & Imlay, J.A. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol. Microbiol. 75, 1389–1401 (2010).

    Article  CAS  Google Scholar 

  12. Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994).

    CAS  Google Scholar 

  13. Messner, K.R. & Imlay, J.A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274, 10119–10128 (1999).

    Article  CAS  Google Scholar 

  14. Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008).

    Article  CAS  Google Scholar 

  15. Becker, S.A. & Palsson, B.O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).

    Article  Google Scholar 

  16. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  17. Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    Article  Google Scholar 

  18. Messner, K.R. & Imlay, J.A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).

    Article  CAS  Google Scholar 

  19. Edwards, J.S., Ibarra, R.U. & Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  20. Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003).

    Article  CAS  Google Scholar 

  21. Winter, J., Ilbert, M., Graf, P.C., Ozcelik, D. & Jakob, U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135, 691–701 (2008).

    Article  CAS  Google Scholar 

  22. Taber, H.W., Mueller, J.P., Miller, P.F. & Arrow, A.S. Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 51, 439–457 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jensen, P.R. & Michelsen, O. Carbon and energy metabolism of atp mutants of Escherichia coli. J. Bacteriol. 174, 7635–7641 (1992).

    Article  CAS  Google Scholar 

  24. Boshoff, H.I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).

    Article  CAS  Google Scholar 

  25. AbuOun, M. et al. Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J. Biol. Chem. 284, 29480–29488 (2009).

    Article  CAS  Google Scholar 

  26. Becker, S.A. & Palsson, B.O. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5, 8 (2005).

    Article  Google Scholar 

  27. Jamshidi, N. & Palsson, B.O. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst. Biol. 1, 26 (2007).

    Article  Google Scholar 

  28. Schilling, C.H. & Palsson, B.O. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–283 (2000).

    Article  CAS  Google Scholar 

  29. Henry, C.S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    Article  CAS  Google Scholar 

  30. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  31. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  Google Scholar 

  32. Malinouski, M., Zhou, Y., Belousov, V.V., Hatfield, D.L. & Gladyshev, V.N. Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6, e14564 (2011).

    Article  CAS  Google Scholar 

  33. Dukan, S. & Touati, D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J. Bacteriol. 178, 6145–6150 (1996).

    Article  CAS  Google Scholar 

  34. Yeh, P. & Kishony, R. Networks from drug-drug surfaces. Mol. Syst. Biol. 3, 85 (2007).

    Article  Google Scholar 

  35. Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA 105, 13977–13981 (2008).

    Article  CAS  Google Scholar 

  36. Becker, S.A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2, 727–738 (2007).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Institutes of Health Director′s Pioneer Award Program and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations



M.P.B., J.A.W. and J.J.C. designed the study, analyzed the results and wrote the manuscript. Experiments were done by M.P.B., J.A.W., C.S.S. and I.C.M.

Corresponding author

Correspondence to James J Collins.

Ethics declarations

Competing interests

The authors have filed US Patent Application no. 61/583,662 covering the method described in the paper.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–4 (PDF 596 kb)

Supplementary Data File 1

Constants used to couple ROS generating reactions to their intended reactions within iAF1260 (XLS 9555 kb)

Supplementary Table 1

Potential ROS-generation reactions within iAF1260 (XLSX 24 kb)

Supplementary Table 2

ROS generation within iAF1260 (XLSX 9 kb)

Supplementary Table 3

Enzymes and regulators turned off due to transcriptional regulation in aerobic minimal glucose media (XLSX 31 kb)

Supplementary Table 4

ROS/BM for genetic selections that altered ROS flux (XLSX 11 kb)

Supplementary Table 5

GFP/BM measurements for deletion strains with reporter plasmids (XLSX 10 kb)

Supplementary Table 6

Relative (500nm/420nm) fluorescence ratio of mutant strains (XLSX 9 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brynildsen, M., Winkler, J., Spina, C. et al. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotechnol 31, 160–165 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing